The risks associated with pesticides in small streams remain poorly characterized. The challenges reside in understanding the complexities of (1) the highly dynamic concentration profiles of (2) several hundred active substances with (3) differing seasonality. The present study addressed these three challenges simultaneously.
View Article and Find Full Text PDFA comprehensive assessment of pesticides in surface waters is challenging due to the large number of potential contaminants. Most scientific studies and routine monitoring programs include only 15-40 pesticides, which leads to error-prone interpretations. In the present study, an extensive analytical screening was carried out using liquid chromatography-high-resolution mass spectrometry, covering 86% of all polar organic pesticides sold in Switzerland and applied to agricultural or urban land (in total 249 compounds), plus 134 transformation products; each of which could be quantified in the low ng/L range.
View Article and Find Full Text PDFTemporally resolved environmental risk assessment of fluctuating concentrations of micropollutants is presented. We separated the prediction of toxicity over time from the extrapolation from one to many species and from acute to sublethal effects. A toxicokinetic-toxicodynamic (TKTD) model predicted toxicity caused by fluctuating concentrations of diazinon, measured by time-resolved sampling over 108 days from three locations in a stream network, representing urban, agricultural and mixed land use.
View Article and Find Full Text PDFBiocides leach from facades during rain events and subsequently enter the aquatic environment with storm water. Little is known about the losses of an entire settlement, since most studies referred to wash-off experiments conducted under laboratory conditions. Their results show a fast decrease of concentrations in the beginning, which subsequently slows down.
View Article and Find Full Text PDFBiocides and pesticides are used to control unwanted organisms in urban and agricultural areas. After application, they can be lost to surface waters and impair water quality. Several national consumption studies have shown that urban and agricultural use may be in the same range.
View Article and Find Full Text PDFRelative contributions of agricultural and urban uses to the glyphosate contamination of surface waters were studied in a small catchment (25 km(2)) in Switzerland. Monitoring in four sub-catchments with differing land use allowed comparing load and input dynamics from different sources. Agricultural as well as urban use was surveyed in all sub-catchments allowing for a detailed interpretation of the monitoring results.
View Article and Find Full Text PDF