We investigated whether the N-methyl-D-aspartate (NMDA) receptor partial agonist D-cycloserine (DCS) infused into the prelimbic cortex (PLC) would reverse the learning deficits caused by bilateral excitotoxic lesions of the parafascicular nucleus (PFn) in an odor discrimination task (ODT). Rats with PFn lesions received a bilateral infusion of DCS (10 μg/side) into the PLC 20 min before ODT acquisition. The task retention was evaluated in a drug-free test carried out 24 h later.
View Article and Find Full Text PDFThe aim of the present study was to investigate whether the blockade of muscarinic receptors (mRs) in the basolateral amygdala (BLA), which receives important cholinergic inputs related to avoidance learning, affects the consolidation of two-way active avoidance (TWAA). In Experiment 1, adult male Wistar rats were bilaterally infused with scopolamine (SCOP, 20 μg/site) or PBS (VEH) in the BLA immediately after a single 30-trial acquisition session. Twenty-four hours later, avoidance retention was tested in an identical session.
View Article and Find Full Text PDFWe investigated the effects of bilateral infusions in the prelimbic cortex of D-cycloserine (DCS), a partial agonist of the NMDA receptor-associated glycine site. Wistar rats underwent a training session (acquisition, three trials) and a 24-h test (two retention and two relearning trials) of a rapidly learned olfactory discrimination task. Rats infused with DCS (10 microg/site) prior to training exhibited a significant enhancement of performance in such odor-reward task, especially in relearning.
View Article and Find Full Text PDF