Publications by authors named "Irene Verdu"

Environmental concerns about residues and the traditional disposal methods are driving the search for more environmentally conscious processes, such as pyrolysis and gasification. Their main final product is synthesis gas (syngas) composed of CO, CO, H, and methane. Syngas can be converted into various products using CO-tolerant microorganisms.

View Article and Find Full Text PDF

Farmlands represent a source of aged plastics and pesticides to the surrounding environments. It has been shown that chemicals can be sorbed and desorbed from plastics, but the interaction between plastic and mixtures of pesticides and their effects on freshwater biota has not been assessed yet. The aim of the work was to assess the potential role of agricultural plastics as vectors for a mixture of two herbicides and the impact of the herbicide mixture lixiviated from them towards the freshwater microalga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

This study aimed at evaluating the influence of biofilm in the role of microplastics (MPs) as vectors of pollutants and their impact on Daphnia magna. To do this, virgin polyethylene MPs, (PE-MPs, 40-48 μm) were exposed for four weeks to wastewater (WW) from influent and effluent to promote biofouling. Then, the exposed PE-MPs were put in contact with triclosan.

View Article and Find Full Text PDF

The knowledge about the interaction of nanoplastics with other aquatic pollutants and their combined effects on biota is very scarce. In this work, we studied the interaction between polystyrene nanoplastics (PS NPs) (30 nm) and the micropollutants in a biologically treated wastewater effluent (WW). The capacity of PS NPs to sorb micropollutants was studied as well as their single and combined toxicity towards three freshwater organisms: the recombinant bioluminescent cyanobacterium, Anabaena sp.

View Article and Find Full Text PDF

Despite the large number of recent studies on microplastics (MPs) and their ability to act as carriers of pollutants, the knowledge about the biological effects of MPs loaded with chemicals is scarce. The aim of this study was to evaluate the potential of MPs as vectors for the antimicrobial triclosan (TCS). For it, we tested low-density polyethylene (LDPE), polyamide (PA), polyethylene terephthalate (PET), polyoxymethylene (POM), polypropylene (PP), polystyrene (PS) and the biodegradable polylactic acid (PLA).

View Article and Find Full Text PDF

Water pollution due to microplastics (MPs) is recognized as a major anthropogenic impact. Once MPs reach the ecosystems, they are exposed to a variety of other pollutants, which can be sorbed on them, transported and eventually desorbed. In this work, we tested the hypothesis that MPs can behave as conveyors for delivering chemicals toxic to aquatic microorganisms by investigating the vector role of MPs of polyethylene terephthalate (PET), polylactic acid (PLA), polyoxymethylene (POM) and polystyrene (PS) to the macrolide antibiotics azithromycin (AZI) and clarithromycin (CLA).

View Article and Find Full Text PDF