Publications by authors named "Irene Sola"

In Plasmodium falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase‒6-phosphogluconolactonase (PfG6PD‒6PGL) is involved in the catalysis of the first reaction of the pentose phosphate pathway. Since this enzyme has a key role in parasite development, its unique structure represents a potential target for the discovery of antimalarial drugs. Here we describe the first 3D structural model of the G6PD domain of PfG6PD‒6PGL.

View Article and Find Full Text PDF

Current drugs against human African trypanosomiasis (HAT) suffer from several serious drawbacks. The search for novel, effective, brain permeable, safe, and inexpensive antitrypanosomal compounds is therefore an urgent need. We have recently reported that the 4-aminoquinoline derivative huprine Y, developed in our group as an anticholinesterasic agent, exhibits a submicromolar potency against Trypanosoma brucei and that its homo- and hetero-dimerization can result in to up to three-fold increased potency and selectivity.

View Article and Find Full Text PDF

Different azides and alkynes have been coupled via Cu-catalyzed 1,3-dipolar Huisgen cycloaddition to afford a novel family of N- and C-substituted 1,2,3-triazole derivatives that feature the propargylamine group typical of irreversible MAO-B inhibitors at the C4-side chain of the triazole ring. All the synthesized compounds were evaluated against human MAO-A and MAO-B. Structure-activity relationships and molecular modeling were utilized to gain insight into the structural and chemical features that enhance the binding affinity and selectivity between the two enzyme isoforms.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) peptide plays a key role in synaptic impairment and memory decline associated with neuronal dysfunction and intra-neuronal accumulation of hyperphosphorylated tau protein. Two novel enantiopure rhein-huprine hybrids ((+)-1 and (-)-1) exhibit potent inhibitory effects against human acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), BACE-1 and both Aβ and tau antiaggregation activity in vitro and reduction on the amyloid precursor protein (APP) processing in vivo. Interestingly, in this work, we observed beneficial effects with both (+)- and (-)-1 in the reversion of the neuropathology presented in the AβPPswe/PS-1 Alzheimer´s model, including a reduction in the Aβ levels, tau phosphorylation and memory impairment with both treatments.

View Article and Find Full Text PDF

Human African trypanosomiasis (HAT), Chagas disease and leishmaniasis, which are caused by the trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, are among the most deadly neglected tropical diseases. The development of drugs that are active against several trypanosomatids is appealing from a clinical and economic viewpoint, and seems feasible, as these parasites share metabolic pathways and hence might be treatable by common drugs. From benzonapthyridine 1, an inhibitor of acetylcholinesterase (AChE) for which we have found a remarkable trypanocidal activity, we have designed and synthesized novel benzo[h][1,6]naphthyridines, pyrrolo[3,2-c]quinolines, azepino[3,2-c]quinolines, and pyrano[3,2-c]quinolines through 2-4-step sequences featuring an initial multicomponent Povarov reaction as the key step.

View Article and Find Full Text PDF

We have synthesized a series of heptamethylene-linked levetiracetam-huprine and levetiracetam-(6-chloro)tacrine hybrids to hit amyloid, tau, and cholinergic pathologies as well as β-amyloid (Aβ)-induced epileptiform activity, some of the mechanisms that eventually lead to cognitive deficits in Alzheimer's disease patients. These hybrids are potent inhibitors of human acetylcholinesterase and butyrylcholinesterase in vitro and moderately potent Aβ42 and tau antiaggregating agents in a simple E. coli model of amyloid aggregation.

View Article and Find Full Text PDF

We describe the multigram synthesis and in vivo efficacy studies of a donepezil‒huprine hybrid that has been found to display a promising in vitro multitarget profile of interest for the treatment of Alzheimer's disease (AD). Its synthesis features as the key step a novel multigram preparative chromatographic resolution of intermediate racemic huprine Y by chiral HPLC. Administration of this compound to transgenic CL4176 and CL2006 Caenorhabditis elegans strains expressing human Aβ42, here used as simplified animal models of AD, led to a significant protection from the toxicity induced by Aβ42.

View Article and Find Full Text PDF

Dual submicromolar trypanocidal-antiplasmodial compounds have been identified by screening and chemical synthesis of 4-aminoquinoline-based heterodimeric compounds of three different structural classes. In Trypanosoma brucei, inhibition of the enzyme trypanothione reductase seems to be involved in the potent trypanocidal activity of these heterodimers, although it is probably not the main biological target. Regarding antiplasmodial activity, the heterodimers seem to share the mode of action of the antimalarial drug chloroquine, which involves inhibition of the haem detoxification process.

View Article and Find Full Text PDF

We have synthesized a series of dimers of (+)-(7R,11R)-huprine Y and evaluated their activity against Trypanosoma brucei, Plasmodium falciparum, rat myoblast L6 cells and human acetylcholinesterase (hAChE), and their brain permeability. Most dimers have more potent and selective trypanocidal activity than huprine Y and are brain permeable, but they are devoid of antimalarial activity and remain active against hAChE. Lead optimization will focus on identifying compounds with a more favourable trypanocidal/anticholinesterase activity ratio.

View Article and Find Full Text PDF

We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer's disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase, butyrylcholinesterase, and BACE-1, dual Aβ42 and tau antiaggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction, preventing the loss of synaptic proteins and/or have a positive effect on the induction of long-term potentiation.

View Article and Find Full Text PDF

Background: Multifactorial diseases such as Alzheimer's disease (AD) should be more efficiently tackled by drugs which hit multiple biological targets involved in their pathogenesis. We have recently developed a new family of huprine-tacrine heterodimers, rationally designed to hit multiple targets involved upstream and downstream in the neurotoxic cascade of AD, namely β-amyloid aggregation and formation as well as acetylcholinesterase catalytic activity.

Objective: In this study, the aim was to expand the pharmacological profiling of huprine-tacrine heterodimers investigating their effect on muscarinic M(1) receptors as well as their neuroprotective effects against an oxidative insult.

View Article and Find Full Text PDF

A family of huprine-tacrine heterodimers has been developed to simultaneously block the active and peripheral sites of acetylcholinesterase (AChE). Their dual site binding for AChE, supported by kinetic and molecular modeling studies, results in a highly potent inhibition of the catalytic activity of human AChE and, more importantly, in the in vitro neutralization of the pathological chaperoning effect of AChE toward the aggregation of both the β-amyloid peptide (Aβ) and a prion peptide with a key role in the aggregation of the prion protein. Huprine-tacrine heterodimers take on added value in that they display a potent in vitro inhibitory activity toward human butyrylcholinesterase, self-induced Aβ aggregation, and β-secretase.

View Article and Find Full Text PDF