Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice.
View Article and Find Full Text PDFSynaptic plasticity is a cellular process involved in learning and memory by which specific patterns of neural activity adapt the synaptic strength and efficacy of the synaptic transmission. Its induction is governed by fine tuning between excitatory/inhibitory synaptic transmission. In experimental conditions, synaptic plasticity can be artificially evoked at hippocampal CA1 pyramidal neurons by repeated stimulation of Schaffer collaterals.
View Article and Find Full Text PDFThe G-protein-gated inwardly rectifying potassium (Kir3/GIRK) channel is the effector of many G-protein-coupled receptors (GPCRs). Its dysfunction has been linked to the pathophysiology of Down syndrome, Alzheimer's and Parkinson's diseases, psychiatric disorders, epilepsy, drug addiction, or alcoholism. In the hippocampus, GIRK channels decrease excitability of the cells and contribute to resting membrane potential and inhibitory neurotransmission.
View Article and Find Full Text PDFG protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction.
View Article and Find Full Text PDFBiology (Basel)
July 2020
In early Alzheimer disease (AD) models synaptic failures and upstreaming aberrant patterns of network synchronous activity result in hippocampal-dependent memory deficits. In such initial stage, soluble forms of Amyloid- (A) peptides have been shown to play a causal role. Among different A species, A has been identified as the biologically active fragment, as induces major neuropathological signs related to early AD stages.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFJ Neurochem
May 2020
Hippocampal synaptic plasticity disruption by amyloid-β (Aβ) peptides + thought to be responsible for learning and memory impairments in Alzheimer's disease (AD) early stage. Failures in neuronal excitability maintenance seems to be an underlying mechanism. G-protein-gated inwardly rectifying potassium (GirK) channels control neural excitability by hyperpolarization in response to many G-protein-coupled receptors activation.
View Article and Find Full Text PDFImbalances of excitatory/inhibitory synaptic transmission occur early in the pathogenesis of Alzheimer's disease (AD), leading to hippocampal hyperexcitability and causing synaptic, network, and cognitive dysfunctions. G-protein-gated potassium (GirK) channels play a key role in the control of neuronal excitability, contributing to inhibitory signaling. Here, we evaluate the relationship between GirK channel activity and inhibitory hippocampal functionality in vivo.
View Article and Find Full Text PDFThe hippocampus plays a critical role in learning and memory. Its correct performance relies on excitatory/inhibitory synaptic transmission balance. In early stages of Alzheimer's disease (AD), neuronal hyperexcitability leads to network dysfunction observed in cortical regions such as the hippocampus.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.