Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution.
View Article and Find Full Text PDFWe investigated the assembly of cortical nodes that generate the cytokinetic contractile ring in fission yeast. Observations of cells expressing fluorescent fusion proteins revealed two types of interphase nodes. Type 1 nodes containing kinase Cdr1p, kinase Cdr2p, and anillin Mid1p form in the cortex around the nucleus early in G2.
View Article and Find Full Text PDFEukaryotic cells require IQGAP family multidomain adapter proteins for cytokinesis, but many questions remain about how IQGAPs contribute to the process. Here we show that fission yeast IQGAP Rng2p is required for both the normal process of contractile ring formation from precursor nodes and an alternative mechanism by which rings form from strands of actin filaments. Our work adds to previous studies suggesting a role for Rng2p in node and ring formation.
View Article and Find Full Text PDFBackground: Maturation of human immunodeficiency virus type 1 (HIV-1) occurs upon activation of HIV-1 protease embedded within GagProPol precursors and cleavage of Gag and GagProPol polyproteins. Although reversible oxidation can regulate mature protease activity as well as retrovirus maturation, it is possible that the effects of oxidation on viral maturation are mediated in whole, or part, through effects on the initial intramolecular cleavage event of GagProPol. In order assess the effect of reversible oxidation on this event, we developed a system to isolate the first step in protease activation involving GagProPol.
View Article and Find Full Text PDFActive-site inhibitors of HIV-1 PR (protease) block viral replication by preventing viral maturation. However, HIV-1 often develops resistance to active-site inhibitors through multiple mutations in PR and therefore recent efforts have focused on inhibiting PR dimerization as an alternative approach. Dimerization inhibitors have been identified using kinetic analysis, but additional characterization of the effect of these inhibitors on PR by physical methods has been difficult.
View Article and Find Full Text PDF