In order to release host cells from plasmid-mediated increases in metabolic load and high gene dosages, we developed a plasmid-free, T7-based E. coli expression system in which the target gene is site-specifically integrated into the genome of the host. With this system, plasmid-loss, a source of instability for conventional expression systems, was eliminated.
View Article and Find Full Text PDFThe presence of antibiotic resistance genes in the delivered plasmids is one of the drawbacks of modern gene therapy and DNA vaccine applications. Here, we describe a strategy that allows for plasmid selection in bacterial hosts, without the requirement of any selection marker. Several bacterial strains were modified, so that the plasmid's replicational inhibitor RNA I could suppress the translation of a growth essential gene by RNA-RNA antisense reaction.
View Article and Find Full Text PDFThe use of plasmid DNA for gene therapeutical purposes is a novel technology with advantages and drawbacks. One of the required improvements is to avoid antibiotic resistance genes or other additional sequences for selection within the plasmid. Here, we describe an alternative approach to equip a ColE1 plasmid with a regulatory function within the cell, which could be used for selection of plasmid carrying cells.
View Article and Find Full Text PDF