Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure.
View Article and Find Full Text PDFSARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development.
View Article and Find Full Text PDFTransmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure.
View Article and Find Full Text PDFUnlabelled: SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development.
View Article and Find Full Text PDFThe development of antibody testing for the diagnosis of lymphatic filariasis (LF) is intended to enhance the monitoring and evaluation activities of the Global Program for the Elimination of LF. This is due to the fact that antibody tests are expected to be the most sensitive at detecting exposure to LF compared to antigen that takes longer to develop. To this end a new antibody-based enzyme linked immunosorbent assay (ELISA) to antigen Wb123 has been developed and further designed into a point of care rapid diagnostic test, under evaluation.
View Article and Find Full Text PDFBackground: The decision to stop mass drug administration (MDA) and monitor recrudescence has to be made when endpoints for elimination of lymphatic filariasis (LF) have been achieved. Highly sensitive and specific diagnostic tools are required to do this. The main objective of this study was to determine most effective diagnostic tools for assessing interruption of LF transmission.
View Article and Find Full Text PDFBackground: Lymphatic filariasis (LF) is targeted for global elimination through treatment of entire at-risk populations with repeated annual mass drug administration (MDA). Essential for program success is defining and confirming the appropriate endpoint for MDA when transmission is presumed to have reached a level low enough that it cannot be sustained even in the absence of drug intervention. Guidelines advanced by WHO call for a transmission assessment survey (TAS) to determine if MDA can be stopped within an LF evaluation unit (EU) after at least five effective rounds of annual treatment.
View Article and Find Full Text PDF