Flowering plants adjust their reproductive period to maximize the success of the offspring. Monocarpic plants, those with a single reproductive cycle that precedes plant senescence and death, tightly regulate both flowering initiation and flowering cessation. The end of the flowering period involves the arrest of the inflorescence meristem activity, known as proliferative arrest, in what has been interpreted as an evolutionary adaptation to maximize the allocation of resources to seed production and the viability of the progeny.
View Article and Find Full Text PDFFlowers, and hence, fruits and seeds, are produced by the activity of the inflorescence meristem after the floral transition. In plants with indeterminate inflorescences, the final number of flowers produced by the inflorescence meristem is determined by the length of the flowering period, which ends with inflorescence arrest. Inflorescence arrest depends on many different factors, such as the presence of seeds, the influence of the environment, or endogenous factors such as phytohormone levels and age, which modulate inflorescence meristem activity.
View Article and Find Full Text PDFCarpels are the female reproductive organs of the flower, organized in a gynoecium, which is likely the most complex organ of the plant. The gynoecium provides protection for the ovules, helps to discriminate between male gametophytes, and facilitates successful pollination. After fertilization, it develops into a fruit, a specialized organ for seed protection and dispersal.
View Article and Find Full Text PDFThe gene underlying the melon fruit shape QTL fsqs8.1 is a member of the Ovate Family Proteins. Variation in fruit morphology is caused by changes in gene expression likely due to a cryptic structural variation in this locus.
View Article and Find Full Text PDFThe end of the reproductive phase in monocarpic plants is determined by a coordinated arrest of all active meristems, a process known as global proliferative arrest (GPA). GPA is linked to the correlative control exerted by developing seeds and, possibly, the establishment of strong source-sink relationships. It has been proposed that the meristems that undergo arrest at the end of the reproductive phase behave at the transcriptomic level as dormant meristems, with low mitotic activity and high expression of abscisic acid response genes.
View Article and Find Full Text PDFAfter a vegetative phase, plants initiate the floral transition in response to both environmental and endogenous cues to optimize reproductive success. During this process, the vegetative shoot apical meristem (SAM), which was producing leaves and branches, becomes an inflorescence SAM and starts producing flowers. Inflorescences can be classified in two main categories, depending on the fate of the inflorescence meristem: determinate or indeterminate.
View Article and Find Full Text PDFBackground And Aims: CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived.
View Article and Find Full Text PDFThe four NGATHA genes (NGA) form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style, and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis.
View Article and Find Full Text PDFThe role in flowering time of the MADS-box transcription factor fruitfulL (FUL) has been proposed in many works. FUL has been connected to several flowering pathways as a target of the photoperiod, ambient temperature, and age pathways and it is has been shown to promote flowering in a partially redundant manner with suppressor of overexpression of constans 1 (SOC1). However, the position of FUL in these genetic networks, as well as the functional output of FUL activity during floral transition, remains unclear.
View Article and Find Full Text PDFCarpels are the female reproductive organs of the flower, organized in a gynoecium, which is arguably the most complex organ of a plant. The gynoecium provides protection for the ovules, helps to discriminate between male gametophytes, and facilitates successful pollination. After fertilization, it develops into a fruit, a specialized organ for seed protection and dispersal.
View Article and Find Full Text PDF