Publications by authors named "Irene Lostale-Seijo"

Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity.

View Article and Find Full Text PDF

Fully substituted peptide/[60]fullerene hexakis-adducts offer an excellent opportunity for multivalent protein recognition. In contrast to monofunctionalized fullerene hybrids, peptide/[60]fullerene hexakis-adducts display multiple copies of a peptide in close spatial proximity and in the three dimensions of space. High affinity peptide binders for almost any target can be currently identified by in vitro evolution techniques, often providing synthetically simpler alternatives to natural ligands.

View Article and Find Full Text PDF

The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. Attracted by the interesting properties of two-dimensional inorganic analogues, monomers of different chemical natures are being explored for the assembly of dynamic 2D systems. Although many important discoveries have been already achieved, great challenges are still to be addressed in this field.

View Article and Find Full Text PDF

The membrane translocation of hydrophilic substances constitutes a challenge for their application as therapeutic compounds and labelling probes. To remedy this, charged amphiphilic molecules have been classically used as carriers. However, such amphiphilic carriers may cause aggregation and non-specific membrane lysis.

View Article and Find Full Text PDF

In this work we report a rational design strategy for the identification of new peptide prototypes for the non-disruptive supramolecular permeation of membranes and the transport of different macromolecular giant cargos. The approach targets a maximal enhancement of helicity in the presence of membranes with sequences bearing the minimal number of cationic and hydrophobic moieties. The here reported folding enhancement in membranes allowed the selective non-lytic translocation of different macromolecular cargos including giant proteins.

View Article and Find Full Text PDF

Antivirals are now more important than ever. To efficiently inhibit virus replication, antiviral multivalent strategies need sufficient affinity to overcome the excellent matching between the virus and its receptor. This report highlights a phage capsid scaffold strategy that can be used to precisely position sialic acid moieties to inhibit influenza A virus replication.

View Article and Find Full Text PDF

The cytosolic delivery of hydrophilic, anionic molecular probes and therapeutics is a major challenge in chemical biology and medicine. Herein, we describe the design and synthesis of peptide-cage hybrids that allow an efficient supramolecular binding, cell membrane translocation and cytosolic delivery of a number of anionic dyes, including pyranine, carboxyfluorescein and several sulfonate-containing Alexa dyes. This supramolecular caging strategy is successful in different cell lines, and the dynamic carrier mechanism has been validated by U-tube experiments.

View Article and Find Full Text PDF

We have previously developed a methodology to produce protein microspheres (MS) that can be loaded with proteins of interest in living cells through their C or N-terminal tagging with the so-called IC-Tag. The IC-Tagging method has many applications ranging from the production of immobilized enzymes for industrial use to the production of subunit vaccines due to its intrinsic adjuvancy. Here we show the adaptation of the IC-Tagging to work inside the endoplasmic reticulum and bacteria, allowing us to produce properly modified viral glycoproteins.

View Article and Find Full Text PDF

The internalisation and delivery of active substances into cells is a field of growing interest for chemical biology and therapeutics. As we move from small-molecule-based drugs towards bigger cargos, such as antibodies, enzymes, nucleases or nucleic acids, the development of efficient delivery systems becomes critical for their practical application. Different strategies and synthetic carriers have been developed; these include cationic lipids, gold nanoparticles, polymers, cell-penetrating peptides (CPPs), protein surface modification etc.

View Article and Find Full Text PDF

Even for short peptides that are enriched in basic amino acids, the large chemical space that can be spanned by combinations of natural amino acids hinders the rational design of cell penetrating peptides. We here report on short oligoalanine scaffolds for the fine-tuning of peptide helicity in different media and the study of cell penetrating properties. This strategy allowed the extraction of the structure/activity features required for maximal membrane interaction and cellular penetration at minimal toxicity.

View Article and Find Full Text PDF

The intracellular transport of exogenous proteins has emerged as one of the most promising methodologies for biotechnology and chemical biology. Currently, protein delivery is mainly achieved by liposome encapsulation, translational fusion, and ionic/hydrophobic non-covalent aggregation with transporting molecular vehicles. This work introduces the concept of supramolecular recognition and selective transport of proteins by peptide hybrid materials.

View Article and Find Full Text PDF

The recent advances in genetic engineering demand the development of conceptually new methods to prepare and identify efficient vectors for the intracellular delivery of different nucleotide payloads ranging from short single-stranded oligonucleotides to larger plasmid double-stranded circular DNAs. Although many challenges still have to be overcome, polymers hold great potential for intracellular nucleotide delivery and gene therapy. We here develop and apply the postpolymerization modification of polyhydrazide scaffolds, with different degree of polymerization, for the preparation of amphiphilic polymeric vehicles for the intracellular delivery of a circular plasmid DNA.

View Article and Find Full Text PDF

The discovery of RNA guided endonucleases has emerged as one of the most important tools for gene edition and biotechnology. The selectivity and simplicity of the CRISPR/Cas9 strategy allows the straightforward targeting and editing of particular loci in the cell genome without the requirement of protein engineering. However, the transfection of plasmids encoding the Cas9 and the guide RNA could lead to undesired permanent recombination and immunogenic responses.

View Article and Find Full Text PDF

Unlabelled: We have previously shown that the replication of avian reovirus (ARV) in chicken cells is much more resistant to interferon (IFN) than the replication of vesicular stomatitis virus (VSV) or vaccinia virus (VV). In this study, we have investigated the role that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays in the sensitivity of these three viruses toward the antiviral action of chicken interferon. Our data suggest that while interferon priming of avian cells blocks vaccinia virus replication by promoting PKR activation, the replication of vesicular stomatitis virus appears to be blocked at a pretranslational step.

View Article and Find Full Text PDF

We have previously shown that the replication of avian reovirus (ARV) in chicken embryo fibroblasts (CEF) is more resistant to the antiviral action of interferon (IFN) than the replication of vesicular stomatitis virus (VSV) or vaccinia virus (VV). In this study we examined the capacity of these three viruses to induce the expression of IFN when infecting avian cells. Efficient expression of both type-α and type-β IFNs, as well as of the double-stranded RNA (dsRNA)-activated protein kinase (PKR), takes place in ARV-infected CEF, but not in cells infected with VSV or VV.

View Article and Find Full Text PDF

Particulate material is more efficient in eliciting immune responses. Here we describe the production of microspheres formed by protein muNS-Mi from avian reoviruses, loaded with foreign epitopes by means of IC-Tagging, for their use as vaccines.

View Article and Find Full Text PDF

A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm.

View Article and Find Full Text PDF

Avian reovirus sigmaA is a double-stranded RNA (dsRNA)-binding protein that has been shown to stabilize viral core particles and to protect the virus against the antiviral action of interferon. To continue with the characterization of this viral protein, we have investigated its intracellular distribution in avian cells. Most sigmaA accumulates into cytoplasmic viral factories of infected cells, and yet a significant fraction was detected in the nucleolus.

View Article and Find Full Text PDF