Publications by authors named "Irene L Newton"

RNA modifications, such as methylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (mC) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including viruses, bacteria, fungi, and animals.

View Article and Find Full Text PDF

Unlabelled: The intracellular bacterium is a common symbiont of many arthropods and nematodes, well studied for its impacts on host reproductive biology. However, its broad success as a vertically transmitted infection cannot be attributed to manipulations of host reproduction alone. Using the model and their natively associated strain " Mel", we show that infection supports fly development and buffers against nutritional stress.

View Article and Find Full Text PDF

Microbial communities have considerable impacts on animal health. However, only in recent years have the host factors impacting microbiome composition been explored. An increasing wealth of microbiome data in combination with decades of research on behavior, physiology, and development have resulted in the European honey bee (Apis mellifera) as a burgeoning model system for studying the influence of host behavior on the microbiota.

View Article and Find Full Text PDF

To complete their development, diverse animal species rely on the presence of communities of symbiotic microbiota that are vertically transmitted from mother to offspring. In the dung beetle genus Onthophagus, newly hatched larvae acquire maternal gut symbionts by the consumption of a maternal fecal secretion known as the pedestal. Here, we investigate the role of pedestal symbionts in mediating the normal development of Onthophagus gazella.

View Article and Find Full Text PDF

Symbioses are ubiquitous and have had a tremendous impact on the evolution of life on the planet. Indeed, endosymbiosis lead to the generation of the first eukaryotic cell and from that point onwards, eukaryotes have interacted with the other domains of life, sometimes forming persistent and necessary relationships that span generations. However, because the majority of hosts and symbionts are not easily manipulated, the intricate details of these symbioses, an understanding of the molecular underpinnings of these interactions, have not been elucidated.

View Article and Find Full Text PDF

Unlabelled: Bacterial type IV secretion systems (T4SSs) are composed of two major subfamilies, conjugation machines dedicated to DNA transfer and effector translocators for protein transfer. We show here that the Escherichia coli pKM101-encoded conjugation system, coupled with chimeric substrate receptors, can be repurposed for transfer of heterologous effector proteins. The chimeric receptors were composed of the N-terminal transmembrane domain of pKM101-encoded TraJ fused to soluble domains of VirD4 homologs functioning in Agrobacterium tumefaciens, Anaplasma phagocytophilum, or Wolbachia pipientis A chimeric receptor assembled from A.

View Article and Find Full Text PDF

Unlabelled: Many bacteria live as intracellular symbionts, causing persistent infections within insects. One extraordinarily common infection is that of Wolbachia pipientis, which infects 40% of insect species and induces reproductive effects. The bacteria are passed from generation to generation both vertically (through the oocyte) and horizontally (by environmental transmission).

View Article and Find Full Text PDF
Article Synopsis
  • Wolbachia pipientis are bacteria found in many arthropods, known for inducing various reproductive changes and providing protection against some pathogens.
  • This research compares the genomes of two related Wolbachia strains, wVitA and wUni, which have different reproductive effects on their hosts: wVitA causes sperm-egg incompatibility while wUni induces parthenogenesis.
  • The study reveals significant genomic rearrangements and a higher mutation rate in wUni, suggesting adaptations to its new host environment, particularly as it shifts from cytoplasmic incompatibility to parthenogenesis.
View Article and Find Full Text PDF

One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive).

View Article and Find Full Text PDF

Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D.

View Article and Find Full Text PDF

Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control.

View Article and Find Full Text PDF

The European honey bee (Apis mellifera) is used extensively to produce hive products and for crop pollination, but pervasive concerns about colony health and population decline have sparked an interest in the microbial communities that are associated with these important insects. Currently, only the microbiome of workers has been characterized, while little to nothing is known about the bacterial communities that are associated with queens, even though their health and proper function are central to colony productivity. Here, we provide a large-scale analysis of the gut microbiome of honey bee queens during their developmental trajectory and through the multiple colonies that host them as part of modern queen-rearing practices.

View Article and Find Full Text PDF

Wolbachia pipientis is a nearly ubiquitous, maternally transmitted bacterium that infects the germ line of insect hosts. Estimates are that Wolbachia infects 40 to 60% of insect species on the planet, making it one of the most prevalent infections on Earth. However, we know surprisingly little about the molecular mechanisms used by Wolbachia to infect its hosts.

View Article and Find Full Text PDF

Background: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods.

View Article and Find Full Text PDF

The honey bee, the world's most important agricultural pollinator, relies exclusively on plant-derived foods for nutrition. Nectar and pollen collected by honey bees are processed and matured within the nest through the activities of honey bee-derived microbes and enzymes. In order to better understand the contribution of the microbial community to food processing in the honey bee, we generated a metatranscriptome of the honey bee gut microbiome.

View Article and Find Full Text PDF

A major goal of many evolutionary analyses is to determine the true evolutionary history of an organism. Molecular methods that rely on the phylogenetic signal generated by a few to a handful of loci can be used to approximate the evolution of the entire organism but fall short of providing a global, genome-wide, perspective on evolutionary processes. Indeed, individual genes in a genome may have different evolutionary histories.

View Article and Find Full Text PDF

Background: Microbial ecologists now routinely utilize next-generation sequencing methods to assess microbial diversity in the environment. One tool heavily utilized by many groups is the Naïve Bayesian Classifier developed by the Ribosomal Database Project (RDP-NBC). However, the consistency and confidence of classifications provided by the RDP-NBC is dependent on the training set utilized.

View Article and Find Full Text PDF
Article Synopsis
  • Recent losses of honey bee colonies have sparked interest in the microbial communities that support these pollinators, particularly in transforming pollen into bee bread, a crucial food source.
  • Using advanced sequencing techniques, researchers identified diverse bacterial communities in various environments related to honey bees, discovering new anaerobic bacteria previously unlinked to them.
  • Genetically diverse bee colonies showed greater microbial diversity and fewer pathogens, suggesting that certain beneficial bacteria, especially from the Bifidobacterium genus, may help protect honey bees and enhance their overall health and colony function.
View Article and Find Full Text PDF

Mutualistic associations between bacteria and eukaryotes occur ubiquitously in nature, forming the basis for key ecological and evolutionary innovations. Some of the most prominent examples of these symbioses are chemosynthetic bacteria and marine invertebrates living in the absence of sunlight at deep-sea hydrothermal vents and in sediments rich in reduced sulfur compounds. Here, chemosynthetic bacteria living in close association with their hosts convert CO(2) or CH(4) into organic compounds and provide the host with necessary nutrients.

View Article and Find Full Text PDF

The hydrothermal vent clam Calyptogena magnifica (Bivalvia: Mollusca) is a member of the Vesicomyidae. Species within this family form symbioses with chemosynthetic Gammaproteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a rudimentary gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition.

View Article and Find Full Text PDF

Bacteriophage flux can cause the majority of genetic diversity in free-living bacteria. This tenet of bacterial genome evolution generally does not extend to obligate intracellular bacteria owing to their reduced contact with other microbes and a predominance of gene deletion over gene transfer. However, recent studies suggest intracellular coinfections in the same host can facilitate exchange of mobile elements between obligate intracellular bacteria-a means by which these bacteria can partially mitigate the reductive forces of the intracellular lifestyle.

View Article and Find Full Text PDF

In patients afflicted with cystic fibrosis (CF), morbidity and mortality are primarily associated with the adverse consequences of chronic microbial bronchial infections, which are thought to be caused by a few opportunistic pathogens. However, recent evidence suggests the presence of other microorganisms, which may significantly affect the course and outcome of the infection. Using a combination of 16S rRNA gene clone libraries, bacterial culturing and pyrosequencing of barcoded 16S rRNA amplicons, the microbial communities present in CF patient sputum samples were examined.

View Article and Find Full Text PDF

Several factors can affect the density of mobile DNA in bacterial genomes including rates of exposure to novel gene pools, recombination, and reductive evolution. These traits are difficult to measure across a broad range of bacterial species, but the ecological niches occupied by an organism provide some indication of the relative magnitude of these forces. Here, by analyzing 384 bacterial genomes assigned to three ecological categories (obligate intracellular, facultative intracellular, and extracellular), we address two, related questions: How does the density of mobile DNA vary across the Bacteria? And is there a statistically supported relationship between ecological niche and mobile element gene density? We report three findings.

View Article and Find Full Text PDF

Background: The Vesicomyidae (Bivalvia: Mollusca) are a family of clams that form symbioses with chemosynthetic gamma-proteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a reduced gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. Recently, two vesicomyid symbiont genomes were sequenced, illuminating the possible nutritional contributions of the symbiont to the host and making genome-wide evolutionary analyses possible.

View Article and Find Full Text PDF

Chemosynthetic endosymbioses occur ubiquitously at oxic-anoxic interfaces in marine environments. In these mutualisms, bacteria living directly within the cell of a eukaryotic host oxidize reduced chemicals (sulfur or methane), fueling their own energetic and biosynthetic needs, in addition to those of their host. In habitats such as deep-sea hydrothermal vents, chemosynthetic symbioses dominate the biomass, contributing substantially to primary production.

View Article and Find Full Text PDF