Publications by authors named "Irene Jenkins"

Small molecule drugs suffer from poor in vivo half-life, rapid degradation, and systemic off-target toxicity. To address these issues, researchers have developed nanoparticles that significantly enhance the delivery of many drugs while reducing their toxicity and improving targeting to specific organs. Recombinantly synthesized biomaterials such as elastin-like polypeptides (ELPs) have unique attributes that greatly facilitate the rational design of nanoparticles for drug delivery.

View Article and Find Full Text PDF

Valency is a fundamental principle to control macromolecular interactions and is used to target specific cell types by multivalent ligand-receptor interactions using self-assembled nanoparticle carriers. At the concentrations encountered in solid tumors upon systemic administration, these nanoparticles are, however, likely to show critical micelle concentration (CMC)-dependent disassembly and thus loss of function. To overcome this limitation, core-crosslinkable micelles of genetically encoded resilin-/elastin-like diblock polypeptides were recombinantly synthesized.

View Article and Find Full Text PDF

Elastin-like polypeptides (ELPs) are thermally responsive biopolymers that consist of a repeated amino acid motif derived from human tropoelastin. These peptides exhibit temperature-dependent phase behavior that can be harnessed to produce stimuli-responsive biomaterials, such as nanoparticles or injectable drug delivery depots. As ELPs are genetically encoded, the properties of ELP-based biomaterials can be controlled with a precision that is unattainable with synthetic polymers.

View Article and Find Full Text PDF