Single-cell RNA sequencing is a powerful tool to investigate the cellular makeup of tumor samples. However, due to the sparse data and the complex tumor microenvironment, it can be challenging to identify neoplastic cells that play important roles in tumor growth and disease progression. This is especially relevant for blood cancers, where neoplastic cells may be highly similar to normal cells.
View Article and Find Full Text PDFRAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Here, using single-cell, multi-omics technologies, we seek to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We identify that RAS pathway mutations induce transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs) and downstream monocytic populations in response to cell-intrinsic and -extrinsic inflammatory signaling that also impair the functions of immune cells.
View Article and Find Full Text PDFThe molecular mechanisms of venetoclax-based therapy failure in patients with acute myeloid leukemia were recently clarified, but the mechanisms by which patients with myelodysplastic syndromes (MDS) acquire secondary resistance to venetoclax after an initial response remain to be elucidated. Here, we show an expansion of MDS hematopoietic stem cells (HSCs) with a granulo-monocytic-biased transcriptional differentiation state in MDS patients who initially responded to venetoclax but eventually relapsed. While MDS HSCs in an undifferentiated cellular state are sensitive to venetoclax treatment, differentiation towards a granulo-monocytic-biased transcriptional state, through the acquisition or expansion of clones with STAG2 or RUNX1 mutations, affects HSCs' survival dependence from BCL2-mediated anti-apoptotic pathways to TNFα-induced pro-survival NF-κB signaling and drives resistance to venetoclax-mediated cytotoxicity.
View Article and Find Full Text PDFDNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are a group of incurable hematopoietic stem cell (HSC) neoplasms characterized by peripheral blood cytopenias and a high risk of progression to acute myeloid leukemia. MDS represent the final stage in a continuum of HSCs' genetic and functional alterations and are preceded by a premalignant phase, clonal cytopenia of undetermined significance (CCUS). Dissecting the mechanisms of CCUS maintenance may uncover therapeutic targets to delay or prevent malignant transformation.
View Article and Find Full Text PDFpathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Using single-cell, multi-omics technologies, we sought to dissect the biological mechanisms underlying the initiation and progression of pathway-mutated CMML. We found that pathway mutations induced the transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs), which underwent proliferation and monocytic differentiation in response to cell-intrinsic and -extrinsic inflammatory signaling that also impaired immune cells' functions.
View Article and Find Full Text PDFUnlabelled: DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation.
View Article and Find Full Text PDFDrug testing assays in hematopoietic stem and progenitor cells (HSPCs) are fundamental in biological studies of myelodysplastic syndromes (MDS) but have historically entailed a technical challenge. This protocol allows the efficient isolation of MDS HSPCs from bone marrow mononuclear cell fractions and their culturing with the support of stromal cells for improved maintenance during drug testing. Lastly, specific steps are given to quantify surviving cells and assess changes in the HSPC hierarchies.
View Article and Find Full Text PDFHypomethylating agents (HMAs) are the standard of care for myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). HMA treatment failure is a major clinical problem and its mechanisms are poorly characterized. We performed RNA sequencing in CD34 bone marrow stem hematopoietic stem and progenitor cells (BM-HSPCs) from 51 patients with CMML and MDS before HMA treatment and compared transcriptomic signatures between responders and nonresponders.
View Article and Find Full Text PDFLancet Haematol
October 2022
Background: Therapies beyond hypomethylating agents such as azacitidine are needed in high-risk myelodysplastic syndromes. Venetoclax is an orally bioavailable small molecule BCL-2 inhibitor that is synergistic with hypomethylating agents. We therefore aimed to evaluate the safety, tolerability, and preliminary activity of azacitidine combined with venetoclax for treatment-naive and relapsed or refractory high-risk myelodysplastic syndromes or chronic myelomonocytic leukaemia.
View Article and Find Full Text PDFFailure of hypomethylation agent (HMA) treatments is an important issue in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Recent studies indicated that function of wildtype TP53 positively impacts outcome of HMA treatments. We investigated the combination of the HMA azacitidine (AZA) with DS-3032b and DS-5272, novel antagonists of the TP53 negative regulator MDM2, in cellular and animal models of MDS and CMML.
View Article and Find Full Text PDFLoss-of-function TET2 mutations are recurrent somatic lesions in chronic myelomonocytic leukemia (CMML). KDM6B encodes a histone demethylase involved in innate immune regulation that is overexpressed in CMML. We conducted genomic and transcriptomic analyses in treatment naïve CMML patients and observed that the patients carrying both TET2 mutations and KDM6B overexpression constituted 18% of the cohort and 42% of patients with TET2 mutations.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited.
View Article and Find Full Text PDFThe molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion.
View Article and Find Full Text PDFChronic myelomonocytic leukemia (CMML) is characterized by myelomonocytic bias and monocytic proliferation. Whether cell-intrinsic innate immune or inflammatory upregulation mediate disease pathogenesis and phenotype or whether the degree of aberrant monocytic differentiation influences outcomes remains unclear. We compared the transcriptomic features of bone marrow CD34+ cells from 19 patients with CMML and compared to healthy individuals.
View Article and Find Full Text PDFLILRB4 is expressed in AML M4/M5 cells and negatively regulates immune cell activation T-cell suppression. Its expression and role in chronic myelomonocytic leukemia (CMML) and myelodysplastic syndrome (MDS) are unknown. We investigated LILRB4 expression in 19 CMML and 27 MDS patients and correlated it with response to subsequent hypomethylating agent (HMA) therapy.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis and cytopenias due to uncontrolled programmed cell death. The presence of pro-inflammatory cytokines and constitutive activation of innate immunity signals in MDS cells suggest inflammatory cell death, such as necroptosis, may be responsible for disease phenotype. We evaluated 64 bone marrow samples from 55 patients with MDS or chronic myelomonocytic leukemia (CMML) obtained prior to (n = 46) or after (n = 18) therapy with hypomethylating agents (HMAs).
View Article and Find Full Text PDFNucleophosmin () mutations are common in acute myeloid leukemia and are associated with high remission rates and prolonged survival with intensive chemotherapy. mutations are rare in myelodysplastic syndromes (MDS) or myelodysplastic/myeloproliferative neoplasm (MDS/MPN), and the clinical outcomes of these patients, when treated with intensive chemotherapy, are unknown. We retrospectively evaluated the clinicopathologic characteristics and the impact of therapy in 31 patients with MDS or MDS/MPN and mutations.
View Article and Find Full Text PDFKDM6B is an epigenetic regulator that mediates transcriptional activation during differentiation, including in bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). Overexpression of KDM6B has been reported in BM HSPCs of patients with myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Whether the overexpression of KDM6B contributes to the pathogenesis of these diseases remains to be elucidated.
View Article and Find Full Text PDFThe prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents.
View Article and Find Full Text PDF