Oxygen (O) supply is constantly maintained by the vascular network for a proper tissue oxygenation. Hypoxia is the result of an increased O demand and/or decreased supply and is common in both physiological conditions and human diseases. Angiogenesis is one of the adaptive responses to hypoxia and is mainly regulated by the hypoxia-inducible factors, HIFs.
View Article and Find Full Text PDFMelanoma is the principal cause of death in skin cancer due to its ability to invade and cause metastasis. Hypoxia, which characterises the tumour microenvironment (TME), plays an important role in melanoma development, as cancer cells can adapt and acquire a more aggressive phenotype. Carbonic anhydrases (CA) activity, involved in pH regulation, is related to melanoma cell migration and invasion.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
February 2024
The sequestosome 1 (SQSTM1)/p62 is an adaptor protein which plays multiple roles in several cell functions, including cell survival and autophagy. Dendritic cells (DCs) are the most prominent antigen presenting cells and during their lifespan they are exposed to different oxygen tensions, including hypoxia. By using a siRNA approach we found out that p62 was implicated in the maintenance of Erk1/2 phosphorylation and preservation of hypoxic DC survival, as well as in the reduction of AMPK activation.
View Article and Find Full Text PDFBackground: Malignant melanoma is the leading cause of death among skin cancer patients due to its tendency to metastasize. Alterations at the molecular level are often evident, which is why melanoma biology has garnered increasing interest. The hedgehog (Hh) pathway, which is essential for embryonic development, is aberrantly re-activated in melanoma and may represent a promising therapeutic target.
View Article and Find Full Text PDFDendritic cells (DCs) are innate immune cells with a central role in immunity and tolerance. Under steady-state, DCs are scattered in tissues as resting cells. Upon infection or injury, DCs get activated and acquire the full capacity to prime antigen-specific CD4 and CD8 T cells, thus bridging innate and adaptive immunity.
View Article and Find Full Text PDFHypoxia is a component of both physiological and pathological conditions, including inflammation, solid tumors, and lymphoid tissues, where O demand is not balanced by O supply. During their lifespan, dendritic cells (DCs) are exposed to different pO and activate different adaptive responses, including autophagy, to preserve their viability and functions. Autophagy plays multiple roles in DC physiology.
View Article and Find Full Text PDFDuring their lifespan, dendritic cells (DCs) are exposed to different pO levels that affect their differentiation and functions. Autophagy is one of the adaptive responses to hypoxia with important implications for cell survival. While the autophagic machinery in DCs was shown to impact signaling of TLRs, its regulation by the MD-2/TLR4 ligand LPS is still unclear.
View Article and Find Full Text PDFHypoxia occurs in physiological and pathological conditions. T cells experience hypoxia in pathological and physiological conditions as well as in lymphoid organs. Indeed, hypoxia-inducible factor 1α (HIF-1α) affects T cell survival and functions.
View Article and Find Full Text PDFHuman rhinoviruses (HRVs) express 2 cysteine proteases, 2A and 3C, that are responsible for viral polyprotein processing. Both proteases also suppress host gene expression by inhibiting mRNA transcription, nuclear export and cap-dependent translation. However, the relative contribution that each makes in achieving this goal remains unclear.
View Article and Find Full Text PDFBreast cancer (BC) relapse and metastasis are the leading cause of death and, together with drug resistance, keep mortality still high. The Hedgehog (Hh) pathway is expressed during embryogenesis, organogenesis and in adult tissue homeostasis and its aberrant activation is often associated with cancer. Carbonic anhydrase (CA) enzymes are important during development; they play a key role in controlling several cellular mechanisms, such as pH regulation, survival, and migration, and they are aberrantly expressed in cancer.
View Article and Find Full Text PDFBackground/aims: Hypoxia is a powerful stimulator of angiogenesis under physiological as well as pathological conditions. Normal endothelial cells (EC), such as human umbilical vein EC (HUVEC), are relatively affected by hypoxic insult in terms of cell survival. In contrast, EC from tumors are particularly resistant to hypoxia-induced cell death.
View Article and Find Full Text PDFNeuroblastoma (NB) is a highly malignant pediatric solid tumor where a hypoxic signature correlates with unfavorable patient outcome. The hypoxia-inducible factor (HIF)-1α plays an important role in NB progression, contributing to cell proliferation and invasiveness. RAI belongs to the Shc family proteins, it is mainly neuron specific and protects against cerebral ischemia.
View Article and Find Full Text PDFStem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs.
View Article and Find Full Text PDFInflammation and tumor hypoxia are intimately linked and breast cancer provides a typical example of an inflammation-linked malignant disease. Indeed, breast cancer progression is actively supported by inflammatory components, including IL-1β, and by the hypoxia-inducible factor- (HIF-) 1α. In spite of many attempts where the role of either IL-1β or HIF-1α was evaluated, detailed mechanisms for their effects on breast cancer cell migration under hypoxia are still unclear.
View Article and Find Full Text PDFEndometriosis is associated with local angiogenic and hypoxic mechanisms. Indeed, peritoneal fluid of women with endometriosis generates a specific microenvironment to support the growth and development of ectopic endometrial tissues. The association between proangiogenic markers and hypoxic processes in different endometriosis phenotypes was investigated in the present study, analyzing the expression of several genes, related to hypoxic signaling pathway and involved in angiogenic processes, in nonpregnant women with different forms of endometriosis.
View Article and Find Full Text PDFHypoxia represents an inadequate oxygen supply to tissues, which can modulate cell functions, primarily through the hypoxia-inducible transcription factor HIF-1α. Dendritic cells (DC) are professional antigen-presenting cells and their migration maybe affected by hypoxia, since the local microenvironment in lymphoid organs, as well as in inflamed and tumor tissues, is characterized by low oxygen tensions. In this study we observed an enhanced migratory capability of human monocyte-derived DC, using in vitro migration assays performed under hypoxic conditions.
View Article and Find Full Text PDFStarting from our in-house library of pyrazolo[3,4-d]pyrimidines, a cross-docking simulation was conducted on Bcr-Abl T315I mutant. Among the selected compounds (2a-e), the 4-bromo derivative 2b showed the best activity against the Bcr-Abl T315I mutant. Deeper computational studies highlighted the importance of the bromine atom in the para position of the N1 side chain phenyl ring for the interaction with the T315I mutant.
View Article and Find Full Text PDFThe tumor microenvironment is characterized by a poor circulation which results in the selection of neoplastic cells that can grow or survive under hypoxic conditions. The relationship between hypoxia and histone deacetylase (HDAC) inhibitors has been previously established. In this work we evaluated the effects of novel HDAC inhibitors (the natural peptide FR235222 and three tetrapeptide analogs) in the human breast cancer cell line MDAMB231, cultured under hypoxia (2% O2 ≉ 14 mmHg) or normoxia (20% O2 ≉ 140 mmHg).
View Article and Find Full Text PDFN-[2-Methyl-5-(triazol-1-yl)phenyl]pyrimidin-2-amine derivatives were synthesized and evaluated in vitro for their potential use as inhibitors of Bcr-Abl. The design is based on the bioisosterism between the 1,2,3-triazole ring and the amide group. The synthesis involves a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) as the key step, with the exclusive production of anti-(1,4)-triazole derivatives.
View Article and Find Full Text PDFA family of dual Src/Abl inhibitors characterized by a substituted pyrazolo[3,4-d]pyrimidine scaffold was previously reported by us and proved to be active against several tumor cell lines. Among these compounds, a promising antileukemia lead (1) has been recently identified, but, unfortunately, it suffers from substandard pharmaceutical properties. Accordingly, an approach for the optimization of the lead 1 is described in the present work.
View Article and Find Full Text PDFPotential boron neutron capture therapy (BNCT) agents have been designed on the basis of the evidence about translocator protein (TSPO) overexpression on the outer mitochondrial membrane of tumor cells. The structure of the first TSPO ligand bearing a carborane cage (compound 2d) has been modified in order to find a suitable candidate for in vivo studies. The designed compounds were synthesized and evaluated for their potential interaction with TSPO and tumor cells.
View Article and Find Full Text PDFThe main aim of this study was to enhance the solubility of pyrazolo[3,4-d]pyrimidines 1-8 able to strongly inhibit Src and Abl tyrosine kinase phosphorylation in cell-free assays and to significantly reduce leukemic and osteosarcoma cell lines growth, but characterized by very low solubility in aqueous media. Their water solubility was improved between 100 and 1000 folds by solubilization with 2-hydroxypropyl-β-cyclodextrin (HPβCD) and ratio of inclusion complex were determined by phase solubility method. Finally, some complexed compounds were tested on different leukemic (K-652, KU-812 and HL-60) and osteosarcoma (SaOS-2) cell lines showing a good enhancement of biological response in comparison with the not complexed compounds.
View Article and Find Full Text PDFThe casual relationship between inflammation and tumour progression has been widely accepted and the etiology of breast cancer has been associated with inflammatory processes. Interleukin (IL)-1β, besides its central role in inflammation, has also been recognised as a powerful player in tumour progression, angiogenesis and invasiveness. Recently, there has been considerable interest in understanding the non-hypoxic upregulation of the hypoxia-inducible factor (HIF)-1α by IL-1 in neoplastic cells since aberrant expression of HIF-1α correlates with tumour progression.
View Article and Find Full Text PDFAberrant expression of the protease-activated receptor (PAR)-1 has been associated with tumour progression. Indeed, PAR-1 expression correlates with tumour invasiveness, as well as with cancer cell survival. As the tumour microenvironment is characterised by a low oxygen tension, we decided to investigate the role of PAR-1 in cancer cells exposed to a hypoxic microenvironment.
View Article and Find Full Text PDF