Proc Natl Acad Sci U S A
June 2024
Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF).
View Article and Find Full Text PDFp53 is a hallmark tumor suppressor due in part to its role in cell cycle progression, DNA damage repair, and cellular apoptosis; its protein activity interrelates with the Sirtuin family of proteins, major regulators of the cellular response to metabolic, oxidative, and genotoxic stress. In the recent years, mammalian Sirtuin 7 (SIRT7) has emerged as a pivotal regulator of p53, fine-tuning its activity in a context dependent manner. SIRT7 is frequently overexpressed in human cancer, yet its precise role in tumorigenesis and whether it involves p53 regulation is insufficiently understood.
View Article and Find Full Text PDFThe Sirtuin family of NAD+-dependent enzymes plays an important role in maintaining genome stability upon stress. Several mammalian Sirtuins have been linked directly or indirectly to the regulation of DNA damage during replication through Homologous recombination (HR). The role of one of them, SIRT1, is intriguing as it seems to have a general regulatory role in the DNA damage response (DDR) that has not yet been addressed.
View Article and Find Full Text PDFCytoplasmic recognition of microbial lipopolysaccharides (LPS) in human cells is elicited by the caspase-4 and caspase-5 noncanonical inflammasomes, which induce a form of inflammatory cell death termed pyroptosis. Here we show that LPS-mediated activation of caspase-4 also induces a stress response promoting cellular senescence, which is dependent on the caspase-4 substrate gasdermin-D and the tumor suppressor p53. Furthermore, we found that the caspase-4 noncanonical inflammasome is induced and assembled in response to oncogenic RAS signaling during oncogene-induced senescence (OIS).
View Article and Find Full Text PDFUV radiation is one of the main contributors to skin photoaging by promoting the accumulation of cellular senescence, which in turn induces a proinflammatory and tissue-degrading state that favors skin aging. The members of the sirtuin family of NAD-dependent enzymes play an anti-senescence role and their activation suggests a promising approach for preventing UV-induced senescence in the treatment of skin aging. A two-step screening designed to identify compounds able to protect cells from UV-induced senescence through sirtuin activation identified shikimic acid (SA), a metabolic intermediate in many organisms, as a bona-fide candidate.
View Article and Find Full Text PDFCellular senescence is a stress response program characterized by a robust cell cycle arrest and the induction of a proinflammatory senescence-associated secretory phenotype (SASP) that is triggered through an unknown mechanism. Here, we show that, during oncogene-induced senescence (OIS), the Toll-like receptor 2 (TLR2) and its partner TLR10 are key mediators of senescence in vitro and in murine models. TLR2 promotes cell cycle arrest by regulating the tumor suppressors p53-p21, p16, and p15 and regulates the SASP through the induction of the acute-phase serum amyloids A1 and A2 (A-SAAs) that, in turn, function as the damage-associated molecular patterns (DAMPs) signaling through TLR2 in OIS.
View Article and Find Full Text PDFInflammasomes are multimeric protein complexes that process IL-1β by cleaving the translated full-length protein into its active IL-1β mature fragment. In oncogene-induced senescence, inflammasomes play a crucial role by regulating IL1R signaling and consequently modulating proliferation and the senescence-associated secretory phenotype (SASP). Inflammasome activation requires two steps: (a) priming of the inflammasome by activation of IL1B expression, followed by (b) cleavage and release of mature IL-1β.
View Article and Find Full Text PDFClass IIa histone deacetylase (HDAC) subfamily members are tissue-specific gene repressors with crucial roles in development and differentiation processes. A prominent example is HDAC7, a class IIa HDAC that shows a lymphoid-specific expression pattern within the hematopoietic system. In this study, we explored its potential role in B cell development by generating a conditional knockout mouse model.
View Article and Find Full Text PDF