Neuronal apoptosis is a mechanism used to clear the cells of oxidative stress or DNA damage and refine the final number of neurons for a functional neuronal circuit. The tumor suppressor protein p53 is a key regulator of the cell cycle and serves as a checkpoint for eliminating neurons with high DNA damage, hyperproliferative signals or cellular stress. During development, p53 is largely expressed in progenitor cells.
View Article and Find Full Text PDFHippocampal seizures mimicking mesial temporal lobe epilepsy cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive neural stem cells, React-NSCs) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric division, and final differentiation into reactive astrocytes. As a result, neurogenesis is chronically impaired.
View Article and Find Full Text PDFBackground: Glioblastoma is one of the most aggressive primary brain tumors, with a poor outcome despite multimodal treatment. Methylation of the promoter, which predicts the response to temozolomide, is a well-established prognostic marker for glioblastoma. However, a difference in survival can still be detected within the methylated group, with some patients exhibiting a shorter survival than others, emphasizing the need for additional predictive factors.
View Article and Find Full Text PDFRecruitment of stem cells is crucial for tissue repair. Although stem cell niches can provide important signals, little is known about mechanisms that coordinate the engagement of disseminated stem cells across an injured tissue. In Drosophila, adult brain lesions trigger local recruitment of scattered dormant neural stem cells suggesting a mechanism for creating a transient stem cell activation zone.
View Article and Find Full Text PDFThe mechanisms responsible for determining neural stem cell fate are numerous and complex. To begin to identify the specific components involved in these processes, we generated several mouse neural stem cell (NSC) antibodies against cultured mouse embryonic neurospheres. Our immunohistochemical data showed that the NSC-6 antibody recognized NSCs in the developing and postnatal murine brains as well as in human brain organoids.
View Article and Find Full Text PDF