Application of ribozymes for knockdown of RNA targets requires the identification of suitable target sites according to the consensus sequence. For the hairpin ribozyme, this was originally defined as Y⁻² N⁻¹ *G+¹ U+² Y+³ B+⁴, with Y = U or C, and B = U, C or G, and C being the preferred nucleobase at positions -2 and +4. In the context of development of ribozymes for destruction of an oncogenic mRNA, we have designed ribozyme variants that efficiently process RNA substrates at U⁻² G⁻¹ *G+¹ U+² A+³ A+⁴ sites.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2007
Over the past two decades, the structure and mechanism of catalytic RNA have been extensively studied; now ribozymes are understood well enough to turn them into useful tools. After we have demonstrated the twin ribozyme mediated insertion of additional nucleotides into a predefined position of a suitable substrate RNA, we here show that a similar type of twin ribozyme is also capable of mediating the opposite reaction: the site-specific removal of nucleotides. In particular, we have designed a twin ribozyme that supports the deletion of four uridine residues from a given RNA substrate.
View Article and Find Full Text PDF