Oligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates their behavior.
View Article and Find Full Text PDFWhite matter (WM) is a highly prominent feature in the human cerebrum and is comprised of bundles of myelinated axons that form the connectome of the brain. Myelin is formed by oligodendrocytes and is essential for rapid neuronal electrical communication that underlies the massive computing power of the human brain. Oligodendrocytes are generated throughout life by oligodendrocyte precursor cells (OPCs), which are identified by expression of the chondroitin sulphate proteoglycan NG2 (Cspg4), and are often termed NG2-glia.
View Article and Find Full Text PDFBrain ageing is characterised by a decline in neuronal function and associated cognitive deficits. There is increasing evidence that myelin disruption is an important factor that contributes to the age-related loss of brain plasticity and repair responses. In the brain, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs).
View Article and Find Full Text PDFMyelin disruption is a feature of natural aging and Alzheimer's disease (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Here, we examined age-related changes in OPCs in APP/PS1 mice, a model for AD-like pathology, compared with non-transgenic (Tg) age-matched controls.
View Article and Find Full Text PDFThere is increasing evidence that myelin disruption is related to cognitive decline in Alzheimer's disease (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by adult oligodendrocyte progenitor cells (OPCs), also known as NG2-glia. To address whether alterations in myelination are related to age-dependent changes in OPCs, we analyzed NG2 and myelin basic protein (MBP) immunolabelling in the hippocampus of 3×Tg-AD mice at 6 and 24 months of age, compared with non-Tg age-matched controls.
View Article and Find Full Text PDFOligodendrocytes form the myelin that ensheaths CNS axons, which is essential for rapid neuronal signalling and underpins the massive computing power of the human brain. Oligodendrocytes and myelin also provide metabolic and trophic support for axons and their disruption results in axonal demise and neurodegeneration, which are key features of Alzheimer's disease (AD). Notably, the brain has a remarkable capacity for regenerating oligodendrocytes, which is the function of adult oligodendrocyte progenitor cells (OPCs) or NG2-glia.
View Article and Find Full Text PDFStudies by Bruce Ransom and colleagues have made a major contribution to show that white matter is susceptible to ischemia/hypoxia. White matter contains axons and the glia that support them, notably myelinating oligodendrocytes, which are highly vulnerable to ischemic-hypoxic damage. Previous studies have shown that metabotropic GluRs (mGluRs) are cytoprotective for oligodendrocyte precursor cells and immature oligodendrocytes, but their potential role in adult white matter was unresolved.
View Article and Find Full Text PDF