Publications by authors named "Irene Carmona-Cuenca"

Neurotrophins, activating the PI3K/Akt signaling pathway, control neuronal survival and plasticity. Alterations in NGF, BDNF, IGF-1, or insulin signaling are implicated in the pathogenesis of Alzheimer disease. We have previously characterized a bigenic PS1×APP transgenic mouse displaying early hippocampal Aβ deposition (3 to 4 months) but late (17 to 18 months) neurodegeneration of pyramidal cells, paralleled to the accumulation of soluble Aβ oligomers.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) induces apoptosis in hepatocytes, through a mechanism mediated by reactive oxygen species (ROS) production. Numerous tumoral cells develop mechanisms to escape from the TGF-beta-induced tumor suppressor effects. In this work we show that in FaO rat hepatoma cells inhibition of the epidermal growth factor receptor (EGFR) with the tyrphostin AG1478 enhances TGF-beta-induced cell death, coincident with an elevated increase in ROS production and GSH depletion.

View Article and Find Full Text PDF

Background/aims: The transforming growth factor-beta (TGF-beta) induces apoptosis in hepatocytes through an oxidative stress process. Here, we have analyzed the role of different NADPH oxidase isoforms in the intracellular signalling induced by TGF-beta in hepatocytes, to later explore whether this mechanism is altered in liver tumor cells.

Methods: Primary cultures of rat and human hepatocytes, HepG2 and Hep3B cells were used in in vitro studies to analyze the TGF-beta response.

View Article and Find Full Text PDF

The "in vitro" establishment of a physiological model of bipotential liver progenitors would be useful for analyzing the molecular mechanisms involved in regulating growth and differentiation, as well as studying their potential role/s in liver physiology and pathology. The transforming growth factor-beta (TGF-beta) induces de-differentiation of fetal rat hepatocytes (FH), concomitant with changes in morphology. The aim of this work was to isolate and characterize this population of TGF-beta-treated fetal hepatocytes (TbetaT-FH) and test whether they can behave as liver progenitors.

View Article and Find Full Text PDF

The TGF-beta (transforming growth factor-beta) induces survival signals in foetal rat hepatocytes through transactivation of EGFR (epidermal growth factor receptor). The molecular mechanism is not completely understood, but both activation of the TACE (tumour necrosis factor alpha-converting enzyme)/ADAM17 (a disintegrin and metalloproteinase 17; one of the metalloproteases involved in shedding of the EGFR ligands) and up-regulation of TGF-alpha and HB-EGF (heparin-binding epidermal growth factor-like growth factor) appear to be involved. In the present study, we have analysed the molecular mechanisms that mediate up-regulation of the EGFR ligands by TGF-beta in foetal rat hepatocytes.

View Article and Find Full Text PDF

Background: The activation of hepatic stellate cells (HSCs) plays a pivotal role during liver injury because the resulting myofibroblasts (MFBs) are mainly responsible for connective tissue re-assembly. MFBs represent therefore cellular targets for anti-fibrotic therapy. In this study, we employed activated HSCs, termed M1-4HSCs, whose transdifferentiation to myofibroblastoid cells (named M-HTs) depends on transforming growth factor (TGF)-beta.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) is a survival signal for transforming growth factor-beta (TGF-beta)-induced apoptosis in hepatocytes, phosphatidylinositol 3-kinase (PI 3-K) being involved in this effect. Here, we analyze the possible cross talks between EGF and TGF-beta signals to understand how EGF impairs the early pro-apoptotic events induced by TGF-beta. Data have indicated that neither SMAD nor c-Jun NH2 Terminal Kinase (JNK) activations are altered by EGF, which clearly interferes with events directly related to the radical oxygen species (ROS) production, impairing oxidative stress, p38 MAP kinase activation, and cell death.

View Article and Find Full Text PDF