Publications by authors named "Irene Bazzan"

Since the first report in 2012, molecular copper complexes have been proposed as efficient electrocatalysts for water oxidation reactions, carried out in alkaline/neutral aqueous media. However, in some cases the copper species have been recognized as precursors of an active copper oxide layer, electrodeposited onto the working electrode. Therefore, the question whether copper catalysis is molecular or not is particularly relevant in the field of water oxidation.

View Article and Find Full Text PDF

A salophen cobalt(II) complex enables water oxidation at neutral pH in photoactivated sacrificial cycles under visible light, thus confirming the high appeal of earth abundant single site catalysis for artificial photosynthesis.

View Article and Find Full Text PDF

Isostructural cubane-shaped catalysts [Co(III)(4)(μ-O)(4)(μ-CH(3)COO)(4)(p-NC(5)H(4)X)(4)], 1-X (X = H, Me, t-Bu, OMe, Br, COOMe, CN), enable water oxidation under dark and illuminated conditions, where the primary step of photoinduced electron transfer obeys to Hammett linear free energy relationship behavior. Ligand design and catalyst optimization are instrumental for sustained O(2) productivity with quantum efficiency up to 80% at λ > 400 nm, thus opening a new perspective for in vitro molecular photosynthesis.

View Article and Find Full Text PDF

Photoinduced water oxidation to molecular oxygen takes place in systems made of [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as the photosensitizer, [Co4O4(O2CMe)4(py)4] (py = pyridine) as the molecular catalyst and Na2S2O8 as the sacrificial electron acceptor. The photochemical quantum yield of the process reaches the outstanding value of 30% and depends on pH and catalyst concentration. Transient absorption spectroscopy experiments aimed to clarify the first events of the photocatalytic process are also reported.

View Article and Find Full Text PDF