Publications by authors named "Irene Bailey"

Background: Gene editing in induced pluripotent stem (iPS) cells has been hailed to enable new cell therapies for various monogenetic diseases including dystrophic epidermolysis bullosa (DEB). However, manufacturing, efficacy and safety roadblocks have limited the development of genetically corrected, autologous iPS cell-based therapies.

Methods: We developed Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a new generation GMP-compatible (cGMP), reproducible, and scalable platform to produce autologous clinical-grade iPS cell-derived organotypic induced skin composite (iSC) grafts to treat incurable wounds of patients lacking type VII collagen (C7).

View Article and Find Full Text PDF

Background: Recessive dystrophic epidermolysis bullosa (RDEB) is a rare, devastating blistering genodermatosis caused by mutations in the COL7A1 gene, which encodes for type VII collagen and is necessary for dermal-epidermal adhesion and integrity. Disease manifestations include severe and debilitating wounds, aggressive squamous cell carcinomas, and premature death; however, there are currently no approved therapies. This Phase 1/2a, open-label study evaluated the long-term efficacy and safety of gene-corrected autologous keratinocyte grafts (EB-101) for chronic RDEB wounds.

View Article and Find Full Text PDF

This case series study examines the use of the histone deacetylase inhibitor remetinostat in treating patients with squamous cell carcinoma.

View Article and Find Full Text PDF

Purpose: The mainstay of treatment for basal cell carcinoma (BCC) is surgical excision, which can result in significant associated morbidity, particularly for patients with recurrent tumors. We previously conducted a drug repositioning screen using molecular data from human BCCs and identified histone deacetylase (HDAC) inhibitors as a potential treatment for BCC. Here we conduct the first proof-of-principle study of a topical pan-HDAC inhibitor, remetinostat, in human BCC.

View Article and Find Full Text PDF

Innate DNA repair mechanisms play a critical role in protecting skin keratinocytes from UV mutagenesis and skin cancer development. We hypothesized that individuals who develop frequent skin cancers may harbor germline defects in DNA repair genes and have increased predisposition to internal malignancies. We enrolled 61 patients with unusually frequent basal cell carcinoma (BCC) development, seen at Stanford Hospital and Clinics from January 2005 until December 2015, for germline analysis of 29 DNA repair genes.

View Article and Find Full Text PDF