Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains.
View Article and Find Full Text PDFLife is dependent upon the ability of a cell to rapidly respond to changes in the environment. Small perturbations in local environments change the ability of molecules to interact and, hence, communicate. Hydrostatic pressure provides a rapid non-invasive, fully reversible method for modulating affinities between molecules both and We have developed a simple fluorescence imaging chamber that allows intracellular protein dynamics and molecular events to be followed at pressures <200 bar in living cells.
View Article and Find Full Text PDF