Publications by authors named "Irena Selicharova"

The binding process of insulin to its transmembrane receptor entails a sophisticated interplay between two proteins, each possessing two binding sites. Given the difficulties associated with the use of insulin in the treatment of diabetes, despite its remarkable efficacy, there is interest in smaller and more stable compounds than the native hormone that would effectively activate the receptor. Our study adopts a strategy focused on synthesizing extensive combinatorial libraries of bipodal compounds consisting of two distinct peptides linked to a molecular scaffold.

View Article and Find Full Text PDF

The insulin receptor (IR, with its isoforms IR-A and IR-B) and the insulin-like growth factor 1 receptor (IGF-1R) are related tyrosine kinase receptors. Recently, the portfolio of solved hormone-receptor structures has grown extensively thanks to advancements in cryo-electron microscopy. However, the dynamics of how these receptors transition between their inactive and active state are yet to be fully understood.

View Article and Find Full Text PDF

Elucidating how insulin and the related insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) bind to their cellular receptors (IR and IGF-1R) and how the receptors are activated has been the holy grail for generations of scientists. However, deciphering the 3D structure of tyrosine kinase receptors and their hormone-bound complexes has been complicated by the flexible and dimeric nature of the receptors and the dynamic nature of their interaction with hormones. Therefore, mutagenesis of hormones and kinetic studies first became an important tool for studying receptor interactions.

View Article and Find Full Text PDF
Article Synopsis
  • IGF2 is a protein that helps with growth and development in babies and affects adults too.
  • There are different forms of IGF2 that can be made from a precursor called pro-IGF2(156), and when it doesn't get processed right, it can lead to problems in the body.
  • Some of these forms, like big-IGF2(104) and pro-IGF2(156), may play a role in certain diseases because they act differently and can be found in higher amounts in sick people.
View Article and Find Full Text PDF

Unlabelled: Insulin-like growth factor 1 (IGF-1) and its IGF-1 receptor (IGF-1R) belong to an important biological system that is involved in the regulation of normal growth, but that has also been recognized as playing a role in cancer. IGF-1R antagonists could be interesting for the testing of their potential antiproliferative properties as an alternative to IGF-1R tyrosine-kinase inhibitors or anti-IGF-1R monoclonal antibodies. In this study, we were inspired by the successful development of insulin dimers capable of antagonizing insulin effects on the insulin receptor (IR) by simultaneous binding to two separated binding sites and by blocking structural rearrangement of the IR.

View Article and Find Full Text PDF

Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide.

View Article and Find Full Text PDF

Insulin is stored inside the pancreatic β-cell insulin secretory granules. studies have led to an assumption that high insulin and Zn concentrations inside the pancreatic β-cell insulin secretory granules should promote insulin crystalline state in the form of Zn-stabilized hexamers. Electron microscopic images of thin sections of the pancreatic β-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals.

View Article and Find Full Text PDF
Article Synopsis
  • Insulin helps control the energy balance in our bodies and works by binding to its receptors.
  • Scientists created special insulin dimers (two connected molecules) that can either trigger or block these receptors.
  • Some of these dimers worked better than regular insulin at activating the receptors, suggesting they could be useful for more targeted treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Insulin remains essential for diabetes management, and there's a push for new analogues that behave more like natural insulin and are more stable.
  • Researchers engineered 48 insulin analogues by modifying specific parts of the insulin structure to improve their effectiveness at binding to insulin receptors.
  • One promising analogue showed over 3 times better binding to the metabolic insulin receptor and proved more resistant to aggregation and more effective in animal tests compared to regular human insulin, suggesting it could be worth exploring in clinical settings.
View Article and Find Full Text PDF

We adapted a radioligand receptor binding assay for measuring insulin levels in unknown samples. The assay enables rapid and accurate determination of insulin concentrations in experimental samples, such as from insulin-secreting cells. The principle of the method is based on the binding competition of insulin in a measured sample with a radiolabeled insulin for insulin receptor (IR) in IM-9 cells.

View Article and Find Full Text PDF

Insulin is produced and stored inside the pancreatic β-cell secretory granules, where it is assumed to form Zn-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content.

View Article and Find Full Text PDF

Insulin-like growth factors 2 and 1 (IGF2 and IGF1) and insulin are closely related hormones that are responsible for the regulation of metabolic homeostasis, development and growth of the organism. Physiological functions of insulin and IGF1 are relatively well-studied, but information about the role of IGF2 in the body is still sparse. Recent discoveries called attention to emerging functions of IGF2 in the brain, where it could be involved in processes of learning and memory consolidation.

View Article and Find Full Text PDF

Structural details of changes accompanying interaction between insulin-related hormones and their binding partners are often enigmatic. Here, cross-linking/mass spectrometry could complement structural techniques and reveal details of these protein-protein interfaces. We used such approach to clarify missing structural description of the interface in human insulin-like growth factor (IGF-1): imaginal morphogenesis protein-late 2 protein (Imp-L2) complex which we studied previously by X-ray crystallography.

View Article and Find Full Text PDF

Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2.

View Article and Find Full Text PDF

Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity.

View Article and Find Full Text PDF

Insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively) are protein hormones involved not only in normal growth and development but also in life span regulation and cancer. They exert their functions mainly through the IGF-1R or by binding to isoform A of the insulin receptor (IR-A). The development of IGF-1 and IGF-2 antagonists is of great clinical interest.

View Article and Find Full Text PDF

Human insulin-like growth factor 1 (IGF-1) is a 70 amino acid protein hormone, with key impact on growth, development, and lifespan. The physiological and clinical importance of IGF-1 prompted challenging chemical and biological trials toward the development of its analogs as molecular tools for the IGF-1 receptor (IGF1-R) studies and as new therapeutics. Here, we report a new method for the total chemical synthesis of IGF-1 analogs, which entails the solid-phase synthesis of two IGF-1 precursor chains that is followed by the Cu-catalyzed azide-alkyne cycloaddition ligation and by biomimetic formation of a native pattern of disulfides.

View Article and Find Full Text PDF

We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds.

View Article and Find Full Text PDF

Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones.

View Article and Find Full Text PDF

Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes.

View Article and Find Full Text PDF

Liquid chromatography-tandem mass spectrometry has become the most convenient method to identify and quantify low molecular weight metabolites from various sources. Metabolomics studies of hepatocytes hold promise for the identification of the mechanisms of toxicant-related disease processes. In this chapter, we present a rapid and sensitive liquid chromatography-tandem mass spectrometry method for the quantification of intracellular concentrations of nine homocysteine-based metabolites, namely homocysteine, methionine, cysteine, dimethylglycine, cystathionine, S-adenosylmethionine, S-adenosylhomocysteine, choline, and betaine.

View Article and Find Full Text PDF

Both cardiovascular disease and liver injury are major public health issues. Hyperhomocysteinemia has been linked to cardiovascular diseases, and defects in methyl group metabolism, often resulting in hyperhomocysteinemia, are among the key molecular events postulated to play a role in liver injury. We employed proteomics and metabolomics analyses of human hepatocytes in primary cell culture to explore the spectrum of proteins and associated metabolites affected by the disruption of methyl group metabolism.

View Article and Find Full Text PDF

We optimized and validated a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of six metabolites of homocysteine metabolism: homocysteine, methionine, cysteine, S-adenosylmethionine, S-adenosylhomocysteine and betaine. The detection limits for these metabolites were in the nanomolar range, and the intra- and inter-day precisions were lower than 20% of the relative standard deviations. The method was specifically designed for the determination of the intracellular concentrations of the metabolites in cultured cells.

View Article and Find Full Text PDF

The gonadotropins (GTHs) follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are the key regulators of reproduction. We determined the competence of heterologous recombinant GTHs at eliciting steroid secretion from carp ovaries at different reproductive stages. We collected carp ovaries at: early, mid and end vitellogenesis, when most of the oocytes still contained a germinal vesicle (GV) at a central stage, and mature ovaries with a migrating GV.

View Article and Find Full Text PDF

Background: Transformed phenotypes are common to cell lines derived from various cancers. Proteome profiling is a valuable tool that may reveal uncharacteristic cell phenotypes in transformed cells. Changes in expression of glutathione S-transferases (GSTs) and other proteins interacting with glutathione (GSH) in model cell lines could be of particular interest.

View Article and Find Full Text PDF