Publications by authors named "Irena Paulin"

This research explores how variations in laser powder bed fusion (LPBF) parameters-laser power (), scanning speed (), and base plate preheating temperature ()-affect the mechanical properties of the EOS Co-Cr SP2 dental alloy. A central composite design (CCD) was used to optimize the process parameters. Mechanical testing focused on crucial properties for dental applications, including yield strength (), elongation (), toughness (), and flexural strength ().

View Article and Find Full Text PDF

testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418).

View Article and Find Full Text PDF

Lab-scale investigations on the processing of small powder volumes are of special importance for applications in additive manufacturing (AM) techniques. Due to the technological importance of high-silicon electrical steel, and the increasing need for optimal near-net-shape AM processing, the aim of this study was to investigate the thermal behavior of a high-alloy Fe-Si powder for AM. An Fe-6.

View Article and Find Full Text PDF

Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size.

View Article and Find Full Text PDF

Laser-powder bed fusion (LPBF) is one of the preferred techniques for producing Co-Cr metal structures for dental prosthodontic appliances. However, there is generally insufficient information about material properties related to the production process and parameters. This study was conducted on samples produced from three different commercially available Co-Cr dental alloys produced on three different LPBF machines.

View Article and Find Full Text PDF

The key feature of Fe-Mn alloys is gradual degradability and non-magneticity, with laser power bed fusion (LPBF) parameters influencing the microstructure and chemical composition. Our study focuses on biodegradable Fe-Mn alloys produced by mechanically mixing pure metal feedstock powders as part of the LPBF process. The Mn content and, consequently, the γ-ε phase formation in LPBF samples are directly correlated with an adapted energy-density (E) equation by combining the five primary LPBF parameters.

View Article and Find Full Text PDF