Publications by authors named "Irena Jarosova Kolouchova"

This study investigates the effect of pure yeast culture fermentation versus spontaneous fermentation on the volatile compound profile of industrially produced plum brandy. Using traditional distillation methods, the evolution of key volatile compounds is monitored at seven different moments during the distillation process. By integrating advanced analytical techniques such as GC-MS and sensory evaluation, significant differences in the composition of the distillates are highlighted, particularly in terms of ethyl esters and higher alcohols which are key to the sensory properties of the final product.

View Article and Find Full Text PDF

Metal nanoparticle synthesis via environmentally friendly methods is gaining interest for their potential advantages over conventional physico-chemical approaches. Herein, we propose a robust green synthesis route for lignin-modified silver nanoparticles, utilizing the recovery of lignin as a renewable raw material and exploring its application in valuable areas. Through a systematic approach combining UV-Vis spectroscopy with AAS and DLS, we identified repeatable and scalable reaction conditions in an aqueous solution at pH 11 for homogeneous silver nanoparticles with high uniformity.

View Article and Find Full Text PDF

Fungal contamination poses a persistent challenge to industries, particularly in food, healthcare, and clinical sectors, due to the remarkable resilience of fungi in withstanding conventional control methods. In this context, our research delves into the comparative efficacy of UV radiation and non-thermal plasma (NTP) on key foodborne fungal contaminants - , , , and . The study examined the impact of varying doses of UV radiation on the asexual spores of all mentioned fungal strains.

View Article and Find Full Text PDF
Article Synopsis
  • - Non-thermal plasma (NTP) is gaining attention in the food industry as a method for effectively decontaminating surfaces, especially against resilient microbial biofilms that resist standard disinfectants.
  • - A study comparing the effectiveness of NTP and UV radiation on mature biofilms of four common foodborne fungi showed that NTP resulted in significant damage to the biofilm structure and reduced harmful substances produced by the fungi.
  • - The findings suggest that NTP could serve as a more environmentally friendly and efficient alternative to traditional disinfection methods, highlighting its potential in biofilm eradication efforts.
View Article and Find Full Text PDF

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year.

View Article and Find Full Text PDF

Radon springs, characterized by their high concentrations of radon gas (Rn222), are extreme environments with unique physicochemical conditions distinct from conventional aquatic ecosystems. Our research aimed to investigate microbial life in radon springs, focusing on isolating extremophilic bacteria and assessing their resistance to adverse conditions. Our study revealed the prevalence of Actinomycetia species in the radon spring environment.

View Article and Find Full Text PDF

Thermophilic bacteria of four genera in contrast to the commonly used production strains such as Bacillus subtilis, produce homologs other than menaquinone (MK) with seven isoprene units. The number of isoprene units and the configuration of double bonds are essential factors for their biological activity. The goal was to obtain a strain of bacteria that produces a wide range of MK homologs and only all-trans geometrical isomers, which was the strain G.

View Article and Find Full Text PDF
Article Synopsis
  • This paper investigates various fungal endophytes found in Vitis vinifera (grapevine) leaves and canes in the Czech Republic, using morphological and genetic analyses.
  • A total of 16 different fungal species were identified, including some common ones and several lesser-known fungi, highlighting the diversity of fungal life associated with this plant.
  • The research is pioneering in the context of Central Europe, providing new insights into the taxonomy, ecology, and geographical distribution of V. vinifera's fungal endophytes.
View Article and Find Full Text PDF

Microscopic filamentous fungi are ubiquitous microorganisms that adapt very easily to a variety of environmental conditions. Due to this adaptability, they can colonize a number of various surfaces where they are able to start forming biofilms. Life in the form of biofilms provides them with many benefits (increased resistance to desiccation, UV radiation, antimicrobial compounds, and host immune response).

View Article and Find Full Text PDF

The increasing risk of antibiotic failure in the treatment of infections is largely related to the production of a wide range of virulence factors. The use of non-thermal plasma (NTP) is a promising alternative to antimicrobial treatment. Nevertheless, there is still a lack of knowledge about the effects of NTP on the virulence factors production.

View Article and Find Full Text PDF

Rhamnolipids are extensively studied biosurfactants due to their potential in many industrial applications, eco-friendly production and properties. However, their availability for broader application is severely limited by their production costs, therefore the optimization of efficacy of their cultivation gains significance as well as the information regarding the physio-chemical properties of rhamnolipids resulting from various cultivation strategies. In this work, the bioprocess design focused on optimization of the rhamnolipid yield of DBM 3774 utilizing the response surface methodology (RSM).

View Article and Find Full Text PDF