Publications by authors named "Iranzu Barbarin"

The separation of CO from N remains a highly challenging task in postcombustion CO capture processes, primarily due to the relatively low CO content (3-15%) compared to that of N (70%). This challenge is particularly prominent for carbon-based adsorbents that exhibit relatively low selectivity. In this study, we present a successfully implemented strategy to enhance the selectivity of composite aerogels made of reduced graphene oxide (rGO) and functionalized polymer particles.

View Article and Find Full Text PDF

The main constraint on developing a full potential for CO adsorption of 3D composite monoliths made of reduced graphene oxide (rGO) and polymer materials is the lack of control of their textural properties, along with the diffusional limitation to the CO adsorption due to the pronounced polymers' microporosity. In this work, the textural properties of the composites were altered by employing highly crosslinked polymer particles, synthesized by emulsion polymerization in aqueous media. For that aim, waterborne methyl methacrylate (MMA) particles were prepared, in which the crosslinking was induced by using different quantities of divinyl benzene (DVB).

View Article and Find Full Text PDF

There is a constant need for versatile technologies to reduce the continuously increasing concentration of CO in the atmosphere, able to provide effective solutions under different conditions (temperature, pressure) and composition of the flue gas. In this work, a combination of graphene oxide (GO) and functionalized waterborne polymer particles was investigated, as versatile and promising candidates for CO capture application, with the aim to develop an easily scalable, inexpensive, and environmentally friendly CO capture technology. There are huge possibilities of different functional monomers that can be selected to functionalize the polymer particles and to provide CO-philicity to the composite nanostructures.

View Article and Find Full Text PDF

Because of its surface characteristics, once in the aquatic environment, graphene could act as a carrier of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), to aquatic organisms. In this study we aimed to (1) assess the capacity of graphene oxide (GO) to sorb PAHs and (2) to evaluate the toxicity of GO alone and in combination with PAHs on zebrafish embryos and adults. GO showed a high sorption capacity for benzo(a)pyrene (B(a)P) (98% of B(a)P sorbed from a nominal concentration of 100 μg/L) and for other PAHs of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil, depending on their log K (95.

View Article and Find Full Text PDF

Polymer composite materials with hierarchical porous structure have been advancing in many different application fields due to excellent physico-chemical properties. However, their synthesis continues to be a highly energy-demanding and environmentally unfriendly process. This work reports a unique water based synthesis of monolithic 3D reduced graphene oxide (rGO) composite structures reinforced with poly(methyl methacrylate) polymer nanoparticles functionalized with epoxy functional groups.

View Article and Find Full Text PDF