In this work, we start from a phenomenological Hamiltonian built from two known systems: the Hamiltonian of a pumped optomechanical system and the Jaynes-Cummings Hamiltonian. Using algebraic techniques we construct an approximate time evolution operator U^(t) for the forced optomechanical system (as a product of exponentials) and take the JC Hamiltonian as an interaction. We transform the later with U^(t) to obtain a generalized interaction picture Hamiltonian which can be linearized and whose time evolution operator is written in a product form.
View Article and Find Full Text PDFUsing the Ermakov-Lewis invariants appearing in KvN mechanics, the time-dependent frequency harmonic oscillator is studied. The analysis builds upon the operational dynamical model, from which it is possible to infer quantum or classical dynamics; thus, the mathematical structure governing the evolution will be the same in both cases. The Liouville operator associated with the time-dependent frequency harmonic oscillator can be transformed using an Ermakov-Lewis invariant, which is also time dependent and commutes with itself at any time.
View Article and Find Full Text PDF