Publications by authors named "Iram Shafiq"

Shading is one of the most chronic restrains which can lead to the lodging of intercropped plants. In order to increase the soybean stem lodging resistance, a 2-year field trial was conducted to evaluate the impact of different ratios and concentrations of NH /NO on the morpho-physiological and biochemical characteristics of soybean stem under shade conditions. The total 5 ratios of NH /NO were applied as follows: T0 = 0/0 (control), T1 = 0/100 (higher ratio), T2 = 25/75 (optimum), T3 = 50/50 (optimum), and T4 = 75/25 (higher ratio) as a nitrogen source.

View Article and Find Full Text PDF

Phosphorus (P) is an essential macronutrient needed for plant growth, development, and production. A deficiency of P causes a severe impact on plant development and productivity. Several P-based fertilizers are being used in agriculture but limited uptake of P by the plant is still a challenge to be solved.

View Article and Find Full Text PDF

An experiment was set up to investigate physiological responses of soybeans to silicon (Si) under normal light and shade conditions. Two soybean varieties, Nandou 12 (shade resistant), and Nan 032-4 (shade susceptible), were tested. Our results revealed that under shading, the net assimilation rate and the plant growth were significantly reduced.

View Article and Find Full Text PDF

Lodging is one of the most chronic restraints of the maize-soybean intercropping system, which causes a serious threat to agriculture development and sustainability. In the maize-soybean intercropping system, shade is a major causative agent that is triggered by the higher stem length of a maize plant. Many morphological and anatomical characteristics are involved in the lodging phenomenon, along with the chemical configuration of the stem.

View Article and Find Full Text PDF
Article Synopsis
  • Research investigated how silicon (Si) applied during soybean seedling growth affects resistance to lodging and enhances photosynthesis.
  • Si application at 200 mg kg notably increased net photosynthetic rates and chlorophyll content, while improving leaf weight and stomatal conductance.
  • The study found that Si also boosted the activity of specific enzymes linked to lignin biosynthesis, contributing to stronger plant cell walls and reduced shading stress in intercropping systems.
View Article and Find Full Text PDF

In response to shading, plant leaves acclimate through a range of morphological, physiological and biochemical changes. Plants produce a myriad of structurally and functionally diverse metabolites that play many important roles in plant response to continually changing environmental conditions as well as abiotic and biotic stresses. To develop a clearer understanding of the effects of shade on soybeans at different growth stages, a comprehensive, three-year, stage-wise study was conducted.

View Article and Find Full Text PDF

Soybean (Glycine max L.) has been extensively cultivated in maize-soybean relay intercropping systems in southwest China. However, during the early co-growth period, soybean seedlings suffer from severe shading by maize resulting in lodging and significant yield reduction.

View Article and Find Full Text PDF