Publications by authors named "Iram M Ahmad"

Single-stranded DNA (ssDNA) intermediates which emerge during DNA metabolic processes are shielded by replication protein A (RPA). RPA binds to ssDNA and acts as a gatekeeper to direct the ssDNA towards downstream DNA metabolic pathways with exceptional specificity. Understanding the mechanistic basis for such RPA-dependent functional specificity requires knowledge of the structural conformation of ssDNA when RPA-bound.

View Article and Find Full Text PDF

Single-stranded DNA (ssDNA) intermediates, which emerge during DNA metabolic processes are shielded by Replication Protein A (RPA). RPA binds to ssDNA and acts as a gatekeeper, directing the ssDNA towards downstream DNA metabolic pathways with exceptional specificity. Understanding the mechanistic basis for such RPA-dependent specificity requires a comprehensive understanding of the structural conformation of ssDNA when bound to RPA.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) measurements between two dyes is a powerful method to interrogate both structure and dynamics of biopolymers. The intensity of a fluorescence signal in a FRET measurement is dependent on both the distance and the relative orientation of the dyes. The latter can at the same time both complicate the analysis and give more detailed information.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) improves the sensitivity of NMR spectroscopy by the transfer of electron polarization to nuclei via irradiation of electron-nuclear transitions with microwaves at the appropriate frequency. For fields > 5 T and using g ∼ 2 electrons as polarizing agents, this requires the availability of microwave sources operating at >140 GHz. Therefore, microwave sources for DNP have generally been continuous-wave (CW) gyrotrons, and more recently solid state, oscillators operating at a fixed frequency and power.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) is a hyperpolarization method that is widely used for increasing the sensitivity of nuclear magnetic resonance (NMR) experiments. DNP is efficient in solid-state and liquid-state NMR, but its implementation in the intermediate state, namely, viscous media, is still less explored. Here, we show that a H DNP enhancement of over 50 can be obtained in viscous liquids at a magnetic field of 9.

View Article and Find Full Text PDF