Publications by authors named "Iraklis Pappas"

The mechanism of C(sp)-H borylation of fluorinated arenes with BPin (Pin = pinacolato) catalyzed by bis(phosphino)pyridine (PNP) cobalt complexes was studied to understand the origins of the uniquely high -to-fluorine regioselectivity observed in these reactions. Variable time normalization analysis (VTNA) of reaction time courses and deuterium kinetic isotope effect measurements established a kinetic regime wherein C(sp)-H oxidative addition is fast and reversible. Monitoring the reaction by in situ NMR spectroscopy revealed the intermediacy of a cobalt(I)-aryl complex that was generated with the same high -to-fluorine regioselectivity associated with the overall catalytic transformation.

View Article and Find Full Text PDF

Background: Stannous fluoride (SnF) is a compound present in many commercially available dentifrices; however, oxidative decomposition negatively impacts its efficacy. Stannous oxidation is often mitigated through the addition of complexing agents or sources of sacrificial stannous compounds. The authors have found that the addition of zinc phosphate significantly improved stannous stability more effectively than other stabilization methods.

View Article and Find Full Text PDF

The hydrogenolysis of titanium-nitrogen bonds in a series of bis(cyclopentadienyl) titanium amides, hydrazides and imides by proton coupled electron transfer (PCET) is described. Twelve different N-H bond dissociation free energies (BDFEs) among the various nitrogen-containing ligands were measured or calculated, and effects of metal oxidation state and N-ligand substituent were determined. Two metal hydride complexes, (η-CMe)(py-Ph)Rh-H (py-Ph = 2-pyridylphenyl, [Rh]-H) and (η-CR)(CO)Cr-H ([Cr]-H, R= H, Me) were evaluated for formal H atom transfer reactivity and were selected due to their relatively weak M-H bond strengths yet ability to activate and cleave molecular hydrogen.

View Article and Find Full Text PDF

A comprehensive study into the mechanism of bis(phosphino)pyridine (PNP) cobalt-catalyzed C-H borylation of 2,6-lutidine using B2Pin2 (Pin = pinacolate) has been conducted. The experimentally observed rate law, deuterium kinetic isotope effects, and identification of the catalyst resting state support turnover limiting C-H activation from a fully characterized cobalt(I) boryl intermediate. Monitoring the catalytic reaction as a function of time revealed that borylation of the 4-position of the pincer in the cobalt catalyst was faster than arene borylation.

View Article and Find Full Text PDF

Cobalt dialkyl and bis(carboxylate) complexes bearing α-diimine ligands have been synthesized and demonstrated as active for the C(sp(3))-H borylation of a range of substituted alkyl arenes using B2Pin2 (Pin = pinacolate) as the boron source. At longer reaction times, rare examples of polyborylation were observed, and in the case of toluene, all three benzylic C-H positions were functionalized. Coupling benzylic C-H activation with alkyl isomerization enabled a base-metal-catalyzed method for the borylation of remote, unactivated C(sp(3))-H bonds.

View Article and Find Full Text PDF

Synthesis of coordinatively unsaturated Cp*Co(IPr) (2), is accomplished by addition of free N-heterocyclic carbene IPr to [(Cp*Co)2-μ-(η(4):η(4)-toluene)] (1). Stoichiometric reactivity is consistent with a 16 electron species, as 2 undergoes ligand addition/NHC displacement and reversible reaction with dihydrogen. Cp*Co(IPr) represents an elusive example of a stable Cp*CoL fragment.

View Article and Find Full Text PDF

The interactions between commercial antiperspirant (AP) salts [aluminum chlorohydrate (ACH), activated ACH, aluminum sesquichlorohydrate (ASCH), zirconium aluminum glycine (ZAG), activated ZAG), pure aluminum polyoxocations (Al13-mer, Al30-mer), and the zirconium(IV)-glycine complex Zr6 (O)4 (OH)4 (H2O)8 (Gly)8]12+(-) (CP-2 or ZG) with Bovine serum albumin (BSA) were studied using zeta potential and turbidity measurements. The maximal turbidity, which revealed the optimal interactions between protein and metal salts, for all protein-metal salt samples was observed at the isoelectric point (IEP), where the zeta potential of the solution was zero. Efficacy of AP salts was determined via three parameters: the amount of salt required to flocculate BSA to reach IEP, the turbidity of solution at the IEP, and the pH range over which the turbidity of the solution remains sufficiently high.

View Article and Find Full Text PDF

A bis(imino)pyridine cobalt-catalyzed hydroboration of terminal alkynes with HBPin (Pin = pinacolate) with high yield and (Z)-selectivity for synthetically valuable vinylboronate esters is described. Deuterium labeling studies, stoichiometric experiments, and isolation of catalytically relevant intermediates support a mechanism involving selective insertion of an alkynylboronate ester into a Co-H bond, a pathway distinct from known precious metal catalysts where metal vinylidene intermediates have been proposed to account for the observed (Z) selectivity. The identity of the imine substituents dictates the relative rates of activation of the cobalt precatalyst with HBPin or the terminal alkyne and, as a consequence, is responsible for the stereochemical outcome of the catalytic reaction.

View Article and Find Full Text PDF

The catalytic hydrogenolysis of the titanium-amide bond in (η(5)-C5Me4SiMe3)2Ti(Cl)NH2 to yield free ammonia is described. The rhodium hydride, (η(5)-C5Me5)(py-Ph)RhH (py-Ph = 2-phenylpyridine), serves as the catalyst and promotes N-H bond formation via hydrogen atom transfer. The N-H bond dissociation free energies of ammonia ligands have also been determined for titanocene and zirconocene complexes and reveal a stark dependence on metal identity and oxidation state.

View Article and Find Full Text PDF

The addition of carbon dioxide to ((tBu)PNP)CoH [(tBu)PNP = 2,6-bis(di-tert-butylphosphinomethyl)pyridine] resulted in rapid insertion into the Co-H bond to form the corresponding κ(1)-formate complex, which has been structurally characterized. Treatment of ((tBu)PNP)CoH with PhSiH3 resulted in oxidative addition to form trans-((tBu)PNP)CoH2(SiH2Ph), which undergoes rapid exchange with excess free silane. With 0.

View Article and Find Full Text PDF

Addition of terminal or internal alkynes to a base-free titanocene oxide results in synthesis of the corresponding oxometallocyclobutene. With appropriate cyclopentadienyl substitution, these compounds undergo reversible C-C reductive elimination offering a unique approach to cyclopentadienyl modification.

View Article and Find Full Text PDF

Partial hydrolysis of AlCl3 with Ca(OH)2 and the amino acid glycine enables the selective transformation of the Al13 Keggin structures, outlining the ε → δ → γ isomerization process. Through this, a new γ-Al13 Keggin structure was able to be isolated and characterized through (27)Al NMR and single-crystal XRD.

View Article and Find Full Text PDF

A discrete, hexanuclear zirconium metallocycle has been synthesized, isolated, and characterized by single-crystal X-ray diffraction. It is sustained in a chair-like conformation by glycolic acids. Formation and growth of the complex has been observed using in situ time-resolved dynamic light scattering measurements.

View Article and Find Full Text PDF