Coarsening is a ubiquitous phenomenon in droplet systems near thermodynamic equilibrium-as an increase in droplet size lowers the system's free energy-however, coarsening of droplets in nonequilibrium systems, such as the cell nucleus, is far from understood. Liquid condensates in the cell nucleus, like nucleoli, form by liquid-liquid phase separation and play a key role in the nuclear organization. In human cells, nucleolar droplets are nucleated at the beginning of the cell cycle and coarsen with time by coalescing with each other.
View Article and Find Full Text PDFWe discover a new type of nonequilibrium phase transition in a model of chromatin dynamics, which accounts for the coherent motions that have been observed in experiment. The coherent motion is due to the long-range cooperation of molecular motors tethered to chromatin. Cooperation occurs if each motor acts simultaneously on the polymer and the surrounding solvent, exerting on them equal and opposite forces.
View Article and Find Full Text PDFEur Phys J E Soft Matter
August 2023
We solve a hydrodynamic model of active chromatin dynamics, within a confined geometry simulating the cell nucleus. Using both analytical and numerical methods, we describe the behavior of the chromatin polymer driven by the activity of motors having polar symmetry, both in the linear response regime as well as in the long-term, fully nonlinear regime of the flows. The introduction of a boundary induces a particular geometry in the flows of chromatin, which we describe using vector spherical harmonics, a tool which greatly simplifies both our analytical and numerical approaches.
View Article and Find Full Text PDFChromatin - the functional form of DNA in the cell - exists in the form of a polymer immersed in a nucleoplasmic fluid inside the cell nucleus. Both chromatin and nucleoplasm are subject to active forces resulting from local biological processes. This activity leads to non-equilibrium phenomena, affecting chromatin organization and dynamics, yet the underlying physics is far from understood.
View Article and Find Full Text PDFCell differentiation, the process by which stem cells become specialized cells, is associated with chromatin reorganization inside the cell nucleus. Here, we measure the chromatin distribution and dynamics in embryonic stem cells in vivo before and after differentiation. We find that undifferentiated chromatin is less compact, more homogeneous, and more dynamic than differentiated chromatin.
View Article and Find Full Text PDF