Publications by authors named "Ira Dicker"

Article Synopsis
  • Newer HIV-1 maturation inhibitors, like VH3739937 (VH-937), have shown promise as effective antiretroviral treatments in clinical settings.
  • VH-937 features a 4-cyanopyridyl ether design that is a step up from earlier inhibitors, leading to a better antiviral profile and effectiveness against the A364V mutation, a common resistance issue.
  • Due to its improved pharmacokinetic properties, VH-937 has the potential for infrequent dosing, with initial human studies supporting the possibility of once-weekly administration.
View Article and Find Full Text PDF

An investigation of the structure-activity relationships of a series of HIV-1 maturation inhibitors (MIs) based on GSK3640254 () was conducted by incorporating novel C-17 amine substituents to reduce the overall basicity of the resultant analogues. We found that replacement of the distal amine on the C-17 sidechain present in with a tertiary alcohol in combination with either a heterocyclic ring system or a cyclohexyl ring substituted with polar groups provided potent wild-type HIV-1 MIs that also retained excellent potency against a T332S/V362I/prR41G variant, a laboratory strain that served as a surrogate to assess HIV-1 polymorphic virus coverage. Compound exhibited broad-spectrum HIV-1 activity against an expanded panel of clinically relevant Gag polymorphic viruses and had the most desirable overall profile in this series of compounds.

View Article and Find Full Text PDF

GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the -substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CHF moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties.

View Article and Find Full Text PDF

Allosteric HIV-1 integrase inhibitors (ALLINIs) have been of interest recently because of their novel mechanism of action. Strategic modifications to the C5 moiety of a class of 4-(4,4-dimethylpiperidinyl)-2,6-dimethylpyridinyl ALLINIs led to the identification of a tetrahydroisoquinoline heterocycle as a suitable spacer element to project the distal hydrophobic aryl ring. Subsequent optimization of the aryl substitutions identified as an ALLINI with single-digit nanomolar inhibitory potency and low clearance across preclinical species.

View Article and Find Full Text PDF

Allosteric integrase inhibitors (ALLINIs) of HIV-1 may hold promise as a novel mechanism for HIV therapeutics and cure. Scaffold modifications to the 4-(4,4-dimethylpiperidinyl) 2,6-dimethylpyridinyl class of ALLINIs provided a series of potent compounds with differentiated 5/6 fused ring systems. Notably, inhibitors containing the 1,2,4-triazolopyridine and imidazopyridine core exhibited single digit nM antiviral potency and low to moderate clearance after intravenous (IV) dosing in rat pharmacokinetic (PK) studies.

View Article and Find Full Text PDF

HIV-1 maturation inhibitors (MIs) offer a novel mechanism of action and potential for use in HIV-1 treatment. Prior MIs displayed clinical efficacy but were associated with the emergence of resistance and some gastrointestinal tolerability events. Treatment with the potentially safer next-generation MI GSK3640254 (GSK'254) resulted in up to a 2-log viral load reduction in a phase IIa proof-of-concept study.

View Article and Find Full Text PDF

GSK3532795 (formerly BMS-955176) is a second-generation HIV-1 maturation inhibitor that has shown broad spectrum antiviral activity and preclinical PK predictive of once-daily dosing in humans. Although efficacy was confirmed in clinical trials, the observation of gastrointestinal intolerability and the emergence of drug resistant virus in a Phase 2b clinical study led to the discontinuation of GSK3532795. As part of the effort to further map the maturation inhibitor pharmacophore and provide additional structural options, the evaluation of alternates to the C-3 phenyl substituent in this chemotype was pursued.

View Article and Find Full Text PDF

The design, synthesis and structure-activity relationships associated with a series of bridged tricyclic pyrimidinone carboxamides as potent inhibitors of HIV-1 integrase strand transfer are described. Structural modifications to these molecules were made in order to examine the effect on potency towards wild-type and clinically-relevant resistant viruses. The [3.

View Article and Find Full Text PDF

The standard of care for HIV-1 infection, highly active antiretroviral therapy (HAART), combines two or more drugs from at least two classes. Even with the success of HAART, new drugs with novel mechanisms are needed to combat viral resistance, improve adherence, and mitigate toxicities. Active site inhibitors of HIV-1 integrase are clinically validated for the treatment of HIV-1 infection.

View Article and Find Full Text PDF

A series of heterocyclic pyrimidinedione-based HIV-1 integrase inhibitors was prepared and screened for activity against purified integrase enzyme and/or viruses modified with the following mutations within integrase: Q148R, Q148H/G140S and N155H. These are mutations that result in resistance to the first generation integrase inhibitors raltegravir and elvitegravir. Based on consideration of drug-target interactions, an approach was undertaken to replace the amide moiety of the first generation pyrimidinedione inhibitor with azole heterocycles that could retain potency against these key resistance mutations.

View Article and Find Full Text PDF

GSK3532795 (formerly BMS955176) is a second-generation maturation inhibitor (MI) that progressed through a Phase 2b study for treatment of HIV-1 infection. Resistance development to GSK3532795 was evaluated through in vitro methods and was correlated with information obtained in a Phase 2a proof-of-concept study in HIV-1 infected participants. Both low and high concentrations of GSK3532795 were used for selections in vitro, and reduced susceptibility to GSK3532795 mapped specifically to amino acids near the capsid/ spacer peptide 1 (SP1) junction, the cleavage of which is blocked by MIs.

View Article and Find Full Text PDF

The strategy and tactics subtending the discovery and development of the second generation HIV-1 maturation inhibitor GSK-3532795/BMS-955176, a compound that exhibits a broader spectrum of antiviral effect in vitro and in clinical studies than the prototypical maturation inhibitor bevirimat, are described.

View Article and Find Full Text PDF

GSK3532795 (formerly known as BMS-955176) is a second-generation maturation inhibitor targeting a specific Gag cleavage site between capsid p24 and spacer peptide 1 of HIV-1. Study 205891 (previously AI468038) investigated the efficacy, safety, and dose response of GSK3532795 in treatment-naive, HIV-1-infected participants. Study 205891 (NCT02415595) was a Phase IIb, randomized, active-controlled, double-blind, international trial.

View Article and Find Full Text PDF

GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1.

View Article and Find Full Text PDF

BMS-707035 is an HIV-1 integrase strand transfer inhibitor (INSTI) discovered by systematic optimization of N-methylpyrimidinone carboxamides guided by structure-activity relationships (SARs) and the single crystal X-ray structure of compound 10. It was rationalized that the unexpectedly advantageous profiles of N-methylpyrimidinone carboxamides with a saturated C2-substitutent may be due, in part, to the geometric relationship between the C2-substituent and the pyrimidinone core. The single crystal X-ray structure of 10 provided support for this reasoning and guided the design of a spirocyclic series 12 which led to discovery of the morpholino-fused pyrimidinone series 13.

View Article and Find Full Text PDF

The design and synthesis of a series of C28 amine-based betulinic acid derivatives as HIV-1 maturation inhibitors is described. This series represents a continuation of efforts following on from previous studies of C-3 benzoic acid-substituted betulinic acid derivatives as HIV-1 maturation inhibitors (MIs) that were explored in the context of C-28 amide substituents. Compared to the C-28 amide series, the C-28 amine derivatives exhibited further improvements in HIV-1 inhibitory activity toward polymorphisms in the Gag polyprotein as well as improved activity in the presence of human serum.

View Article and Find Full Text PDF

Background: GSK3532795 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor that targets HIV-1 Gag, inhibiting the final protease cleavage between capsid protein p24 and spacer protein-1, producing immature, noninfectious virions.

Methods: This was a phase 2a, randomized, dose-ranging multipart trial. In part A, subtype B-infected subjects received 5-120 mg GSK3532795 (or placebo) once daily for 10 days.

View Article and Find Full Text PDF

Background: Protease inhibitor (PI)-resistant HIV-1 isolates with primary substitutions in protease (PR) and secondary substitutions in Gag could potentially exhibit cross-resistance to maturation inhibitors. We evaluated the second-generation maturation inhibitor, GSK3532795, for activity toward clinical isolates with genotypic and phenotypic characteristics associated with PI resistance (longitudinal).

Methods: Longitudinal clinical isolates from 15 PI-treated patients and 7 highly PI-resistant (nonlongitudinal) viruses containing major and minor PI resistance-associated mutations were evaluated for GSK3532795 sensitivity.

View Article and Find Full Text PDF

HIV-1 maturation inhibitors (MIs) disrupt the final step in the HIV-1 protease-mediated cleavage of the Gag polyprotein between capsid p24 capsid (CA) and spacer peptide 1 (SP1), leading to the production of infectious virus. BMS-955176 is a second generation MI with improved antiviral activity toward polymorphic Gag variants compared to a first generation MI bevirimat (BVM). The underlying mechanistic reasons for the differences in polymorphic coverage were studied using antiviral assays, an LC/MS assay that quantitatively characterizes CA/SP1 cleavage kinetics of virus like particles (VLPs) and a radiolabel binding assay to determine VLP/MI affinities and dissociation kinetics.

View Article and Find Full Text PDF

HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.

View Article and Find Full Text PDF

BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176.

View Article and Find Full Text PDF

We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core.

View Article and Find Full Text PDF

A series of C-3 phenyl- and heterocycle-substituted derivatives of C-3 deoxybetulinic acid and C-3 deoxybetulin was designed and synthesized as HIV-1 maturation inhibitors (MIs) and evaluated for their antiviral activity and cytotoxicity in cell culture. A 4-subsituted benzoic acid moiety was identified as an advantageous replacement for the 3'3'-dimethylsuccinate moiety present in previously disclosed MIs that illuminates new aspects of the topography of the pharmacophore. The new analogs exhibit excellent in vitro antiviral activity against wild-type (wt) virus and a lower serum shift when compared with the prototypical HIV-1 MI bevirimat (1, BVM), the first MI to be evaluated in clinical studies.

View Article and Find Full Text PDF

Integration of viral DNA into the host cell genome is an obligatory process for successful replication of HIV-1. Integrase catalyzes the insertion of viral DNA into the target DNA and is a validated target for drug discovery. Herein, we report the synthesis, antiviral activity and pharmacokinetic profiles of several C2-carbon-linked heterocyclic pyrimidinone-4-carboxamides that inhibit the strand transfer step of the integration process.

View Article and Find Full Text PDF

HIV-1 gp120 undergoes multiple conformational changes both before and after binding to the host CD4 receptor. BMS-626529 is an attachment inhibitor (AI) in clinical development (administered as prodrug BMS-663068) that binds to HIV-1 gp120. To investigate the mechanism of action of this new class of antiretroviral compounds, we constructed homology models of unliganded HIV-1 gp120 (UNLIG), a pre-CD4 binding-intermediate conformation (pCD4), a CD4 bound-intermediate conformation (bCD4), and a CD4/co-receptor-bound gp120 (LIG) from a series of partial structures.

View Article and Find Full Text PDF