Publications by authors named "Ira B Schwartz"

Random perturbations and noise can excite instabilities in population systems that result in large fluctuations. Important examples involve class B lasers, where the dynamics are determined by the number of carriers and photons in a cavity with noise appearing in the electric-field dynamics. When such lasers are brought above threshold, the field intensity grows away from an unstable equilibrium, exhibiting transient relaxation oscillations with fluctuations due to noise.

View Article and Find Full Text PDF

We consider the problem of characterizing the dynamics of interacting swarms after they collide and form a stationary center of mass. Modeling efforts have shown that the collision of near head-on interacting swarms can produce a variety of post-collision dynamics including coherent milling, coherent flocking, and scattering behaviors. In particular, recent analysis of the transient dynamics of two colliding swarms has revealed the existence of a critical transition whereby the collision results in a combined milling state about a stationary center of mass.

View Article and Find Full Text PDF

Oscillatory networks subjected to noise are broadly used to model physical and technological systems. Due to their nonlinear coupling, such networks typically have multiple stable and unstable states that a network might visit due to noise. In this article, we focus on the assessment of fluctuations resulting from heterogeneous and spatially correlated noise inputs on Kuramoto model networks.

View Article and Find Full Text PDF

Motivated by recent epidemic outbreaks, including those of COVID-19, we solve the canonical problem of calculating the dynamics and likelihood of extensive outbreaks in a population within a large class of stochastic epidemic models with demographic noise, including the susceptible-infected-recovered (SIR) model and its general extensions. In the limit of large populations, we compute the probability distribution for all extensive outbreaks, including those that entail unusually large or small (extreme) proportions of the population infected. Our approach reveals that, unlike other well-known examples of rare events occurring in discrete-state stochastic systems, the statistics of extreme outbreaks emanate from a full continuum of Hamiltonian paths, each satisfying unique boundary conditions with a conserved probability flux.

View Article and Find Full Text PDF

Swarming patterns that emerge from the interaction of many mobile agents are a subject of great interest in fields ranging from biology to physics and robotics. In some application areas, multiple swarms effectively interact and collide, producing complex spatiotemporal patterns. Recent studies have begun to address swarm-on-swarm dynamics, and in particular the scattering of two large, colliding swarms with nonlinear interactions.

View Article and Find Full Text PDF

Understanding swarm pattern formation is of great interest because it occurs naturally in many physical and biological systems, and has artificial applications in robotics. In both natural and engineered swarms, agent communication is typically local and sparse. This is because, over a limited sensing or communication range, the number of interactions an agent has is much smaller than the total possible number.

View Article and Find Full Text PDF

Without vaccines and treatments, societies must rely on non-pharmaceutical intervention strategies to control the spread of emerging diseases such as COVID-19. Though complete lockdown is epidemiologically effective, because it eliminates infectious contacts, it comes with significant costs. Several recent studies have suggested that a plausible compromise strategy for minimizing epidemic risk is periodic closure, in which populations oscillate between wide-spread social restrictions and relaxation.

View Article and Find Full Text PDF

In some physical and biological swarms, agents effectively move and interact along curved surfaces. The associated constraints and symmetries can affect collective-motion patterns, but little is known about pattern stability in the presence of surface curvature. To make progress, we construct a general model for self-propelled swarms moving on surfaces using Lagrangian mechanics.

View Article and Find Full Text PDF

Swarms of coupled mobile agents subject to inter-agent wireless communication delays are known to exhibit multiple dynamic patterns in space that depend on the strength of the interactions and the magnitude of the communication delays. We experimentally demonstrate communication delay-induced bifurcations in the spatiotemporal patterns of robot swarms using two distinct hardware platforms in a mixed reality framework. Additionally, we make steps toward experimentally validating theoretically predicted parameter regions where transitions between swarm patterns occur.

View Article and Find Full Text PDF

Dynamical emergent patterns of swarms are now fairly well established in nature and include flocking and rotational states. Recently, there has been great interest in engineering and physics to create artificial self-propelled agents that communicate over a network and operate with simple rules, with the goal of creating emergent self-organizing swarm patterns. In this paper, we show that when communicating networks have range dependent delays, rotational states, which are typically periodic, undergo a bifurcation and create swarm dynamics on a torus.

View Article and Find Full Text PDF

It is known that introducing time delays into the communication network of mobile-agent swarms produces coherent rotational patterns, from both theory and experiments. Often such spatiotemporal rotations can be bistable with other swarming patterns, such as milling and flocking. Yet, most known bifurcation results related to delay-coupled swarms rely on inaccurate mean-field techniques.

View Article and Find Full Text PDF

Many networks must maintain synchrony despite the fact that they operate in noisy environments. Important examples are stochastic inertial oscillators, which are known to exhibit fluctuations with broad tails in many applications, including electric power networks with renewable energy sources. Such non-Gaussian fluctuations can result in rare network desynchronization.

View Article and Find Full Text PDF

We study rare phase slips due to noise in synchronized Kuramoto oscillator networks. In the small-noise limit, we demonstrate that slips occur via large fluctuations to saddle phase-locked states. For tree topologies, slips appear between subgraphs that become disconnected at a saddle-node bifurcation, where phase-locked states lose stability generically.

View Article and Find Full Text PDF

During an epidemic, individual nodes in a network may adapt their connections to reduce the chance of infection. A common form of adaption is avoidance rewiring, where a noninfected node breaks a connection to an infected neighbor and forms a new connection to another noninfected node. Here we explore the effects of such adaptivity on stochastic fluctuations in the susceptible-infected-susceptible model, focusing on the largest fluctuations that result in extinction of infection.

View Article and Find Full Text PDF

Networks of interacting, communicating subsystems are common in many fields, from ecology, biology, and epidemiology to engineering and robotics. In the presence of noise and uncertainty, interactions between the individual components can lead to unexpected complex system-wide behaviors. In this paper, we consider a generic model of two weakly coupled dynamical systems, and we show how noise in one part of the system is transmitted through the coupling interface.

View Article and Find Full Text PDF

We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution.

View Article and Find Full Text PDF

We propose an analytical technique to study large fluctuations and switching from internal noise in complex networks. Using order-disorder kinetics as a generic example, we construct and analyze the most probable, or optimal path of fluctuations from one ordered state to another in real and synthetic networks. The method allows us to compute the distribution of large fluctuations and the time scale associated with switching between ordered states for networks consistent with mean-field assumptions.

View Article and Find Full Text PDF

We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network.

View Article and Find Full Text PDF

Swarming behavior continues to be a subject of immense interest because of its centrality in many naturally occurring systems in physics and biology, as well as its importance in applications such as robotics. Here we examine the effects on swarm pattern formation from delayed communication and topological heterogeneity, and in particular, the inclusion of a relatively small number of highly connected nodes, or "motherships," in a swarm's communication network. We find generalized forms of basic patterns for networks with general degree distributions, and a variety of dynamic behaviors including parameter regions with multistability and hybrid motions in bimodal networks.

View Article and Find Full Text PDF

We consider epidemic extinction in finite networks with a broad variation in local connectivity. Generalizing the theory of large fluctuations to random networks with a given degree distribution, we are able to predict the most probable, or optimal, paths to extinction in various configurations, including truncated power laws. We find that paths for heterogeneous networks follow a limiting form in which infection first decreases in low-degree nodes, which triggers a rapid extinction in high-degree nodes, and finishes with a residual low-degree extinction.

View Article and Find Full Text PDF

The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position.

View Article and Find Full Text PDF

A new method is proposed to infer unobserved epidemic subpopulations by exploiting the synchronization properties of multistrain epidemic models. A model for dengue fever is driven by simulated data from secondary infective populations. Primary infective populations in the driven system synchronize to the correct values from the driver system.

View Article and Find Full Text PDF

We consider the rates of noise-induced switching between the stable states of dissipative dynamical systems with delay and also the rates of noise-induced extinction, where such systems model population dynamics. We study a class of systems where the evolution depends on the dynamical variables at a preceding time with a fixed time delay, which we call hard delay. For weak noise, the rates of interattractor switching and extinction are exponentially small.

View Article and Find Full Text PDF

In this paper we develop a perturbation method to predict the rate of occurrence of rare events for singularly perturbed stochastic systems using a probability density function approach. In contrast to a stochastic normal form approach, we model rare event occurrences due to large fluctuations probabilistically and employ a WKB ansatz to approximate their rate of occurrence. This results in the generation of a two-point boundary value problem that models the interaction of the state variables and the most likely noise force required to induce a rare event.

View Article and Find Full Text PDF

Dengue vaccine development efforts have focused on the development of tetravalent vaccines. However, a recent Phase IIb trial of a tetravalent vaccine indicates a protective effect against only 3 of the 4 serotypes. While vaccines effective against a subset of serotypes may reduce morbidity and mortality, particular profiles could result in an increased number of cases due to immune enhancement and other peculiarities of dengue epidemiology.

View Article and Find Full Text PDF