Poly (ADP-ribose) polymerase-1 (PARP1) is a DNA damage sensor that gets activated in proportion to the damage, helping cells to determine whether to repair the damage or initiate cell death processes. We have previously shown PARP1's significance in the developmental processes of Dictyostelium discoideum in addition to its role in oxidative stress and UV-C stress induced cell death. In this study, we show the significance of ROS in PARP1 mediated responses of D.
View Article and Find Full Text PDFResveratrol (R), a plant polyphenol, is known to reduce Cu (II) to Cu (I) generating reactive oxygen species that can cleave plasmid DNA. Here we report a surprising observation of a paradoxical relationship between R and Cu whereby plasmid DNA cleaving / degrading activity of R-Cu increased progressively as the ratio of R to Cu was increased i.e.
View Article and Find Full Text PDFDictyostelium discoideum, a unicellular eukaryote, exhibits multicellularity upon nutrient starvation and is a good model system for developmental studies, and for the study of various signal transduction pathways. Reactive oxygen species at low doses act as signaling molecules; however, at high doses they are known to cause DNA damage that results in the activation of poly(ADP-ribose) polymerase (PARP). We have earlier reported the high resistance of the unicellular stage of D.
View Article and Find Full Text PDF