Publications by authors named "Iqbal A Siddiquey"

The thin film of N-doped ZnO/CNT nanocomposite was successfully fabricated on soda lime glass substrate by a simple sol-gel drop-coating method. The structural, morphological, chemical, and optical properties of as prepared samples were characterized by a variety of tools such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared spectroscopy (FT-IR), and UV-visible spectroscopy. The hexagonal crystalline structure was confirmed from XRD measurement without any other impurity phase detection in samples.

View Article and Find Full Text PDF

FeS /carbon nanotube (CNT) nanocomposites were synthesized and immobilized on the surface of a glassy carbon electrode (GCE) in order to investigate the electrocatalytic conversion of 4-aminophenol (4-AP) into p-quinone in an aqueous medium. The reformed electronic properties (in terms of lowering of band-gap energy and charge-transfer resistance), as well as improved surface area, result in an enhanced redox reaction of 4-AP in the presence of FeS -CNT NCs compared to that with FeS alone. The 4-AP molecules undergo coupled two-proton and two-electron transfer quasi-reversible redox reactions with a symmetry factor of 0.

View Article and Find Full Text PDF

In this paper, we report the synthesis of silica coated ZnO nanoparticles by ultrasound irradiation of a mixture of dispersion of ZnO, tetraethoxysilane (TEOS), and ammonia in an ethanol-water solution medium. The silica coating layer formed at the initial TEOS/ZnO loading of 0.8 for 60 min ultrasonic irradiation was uniform and extended up to 3 nm from the ZnO surface as revealed from HR-TEM images.

View Article and Find Full Text PDF

A novel, fast and facile microwave technique has been developed for preparing monodispersed silica coated silver (Ag@SiO(2)) nanoparticles. Without using any other surface coupling agents such as 3-aminopropyltrimethoxysilane (APS) or polymer such as polyvinyl pyrrolidone (PVP), Ag@SiO(2) nanoparticles could be easily prepared by microwave irradiation of a mixture of colloidal silver nanoparticles, tetraethoxysilane (TEOS) and catalyst for only 2 min. The thickness of silica shell could be conveniently controlled in the range of few nanometers (nm) to 80 nm by changing the concentration of TEOS.

View Article and Find Full Text PDF