Publications by authors named "Ipsita Pal"

Histone deacetylase (HDAC) inhibitors are a widely recognized and valued treatment option for patients with relapsed or refractory peripheral T cell lymphomas (PTCL). Romidepsin is a relatively selective Class I HDAC inhibitor originally approved for patients with relapsed or refractory (R/R) cutaneous T cell lymphoma (CTCL) and subsequently R/R PTCL. Unfortunately, the FDA approval of romidepsin for R/R PTCL was withdrawn due to a negative Phase 4 post-marketing requirement (PMR), diminishing further the treatment options for patients with PTCL.

View Article and Find Full Text PDF

The essential virtues of aqueous zinc battery chemistry stem from the energy-dense zinc metal anode and mild aqueous electrolytes. Yet, their incompatibility - as exposed by zinc's corrosion and associated dendrite problem - poses a challenge to achieving improved cycle life under practically relevant parameters. While electrolyte additives are a scalable strategy, additives that can function at low volume concentrations remain elusive.

View Article and Find Full Text PDF

The practical application of Li-S batteries is severely limited due to low sulfur utilization, sluggish sulfur redox kinetics, intermediate polysulfide dissolution/shuttling, and subsequent anode degradation. A smart cathode with efficient electrocatalyst and a protected anode is necessary. Herein, hollow carbon (HC) spheres are used as a sulfur host to improve the electrical conductivity and buffer the volume expansion of active materials.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is now a global pandemic with the highest number of affected individuals in the modern era. Not only is the infection inflicting significant morbidity and mortality, but there has also been a significant strain to the health care system and the economy. COVID-19 typically presents as viral pneumonia, occasionally leading to acute respiratory distress syndrome (ARDS) and death.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary brain tumor and is invariably fatal. Heat shock proteins (HSPs) provide protein signatures/biomarkers for GBM that afford potential as targets for developing anti-GBM drugs. In GBM, elevated expression of hypoxia inducible factors under the influence of Ets family proteins significantly promotes the expression of HSPs.

View Article and Find Full Text PDF

Purpose Of Review: To highlight recent results in targeting mRNA translation and discuss the results and prospects of translation inhibitors in cancer therapy.

Recent Findings: Until recently, inhibitors of mRNA translation have been thought to likely lack a therapeutic window. In 2012, the Food and Drug Administration (FDA) approved omacetaxine mepesuccinate (homoharringtonine) for the treatment of adults with chronic myelogenous leukemia (CML) who are resistant to at least two tyrosine kinase inhibitors.

View Article and Find Full Text PDF

Background: Epithelial to mesenchymal transition (EMT) and extracellular matrix (ECM) remodeling, are the two elemental processes promoting glioblastoma (GBM). In the present work we propose a mechanistic modelling of GBM and in process establish a hypothesis elucidating critical crosstalk between heat shock proteins (HSPs) and matrix metalloproteinases (MMPs) with synergistic upregulation of EMT-like process and ECM remodeling.

Methods: The interaction and the precise binding site between the HSP and MMP proteins was assayed computationally, in-vitro and in GBM clinical samples.

View Article and Find Full Text PDF

Epithelial to mesenchymal transition (EMT) is compulsory for metastatic dissemination and is stimulated by TGF-β. Although targeting EMT has significant therapeutic potential, very few pharmacological agents have been shown to exert anti-metastatic effects. BI-69A11, a competitive Akt inhibitor, displays anti-tumor activity toward melanoma and colon carcinoma.

View Article and Find Full Text PDF
Article Synopsis
  • There is a significant link between multinucleated cells (MNCs) and resistance to chemotherapy in various cancers, but more research is needed to fully understand how MNCs influence the tumor environment.
  • MNCs from triple-negative breast cancer have been found to alter their micro-environment without proliferating, leading to the secretion of factors like VEGF and MIF that promote chemo-resistance.
  • The study highlights the role of reactive oxygen species (ROS) and the HIF-1α signaling pathway in MNCs, suggesting that targeting this pathway might help overcome drug resistance in breast cancer.
View Article and Find Full Text PDF

Tumor angiogenesis and invasion are deregulated biological processes that drive multistage transformation of tumors from a benign to a life-threatening malignant state activating multiple signaling pathways including MD-2/TLR4/NF-κB. Development of potential inhibitors of this signaling is emerging area for discovery of novel cancer therapeutics. In the current investigation, we identified Iturin A (A lipopeptide molecule from Bacillus megaterium) as a potent inhibitor of angiogenesis and cancer invasion by various in vitro and in vivo methods.

View Article and Find Full Text PDF

Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach.

View Article and Find Full Text PDF

Selective targeting to the tumor niche remains a major challenge in successful cancer therapy. Somatostatin receptor 2 (SSTR2) is overexpressed in breast cancer cells thus making this receptor an attractive target for selective guidance of ligand-conjugated drug liposomes to the tumor site. In this study, a synthetic somatostatin analogue (SST) was used as SSTR2 targeting agent and Diacerein was employed as therapeutic molecule.

View Article and Find Full Text PDF

Background: Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy.

Methods: Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle.

View Article and Find Full Text PDF
Article Synopsis
  • The PI3K-Akt pathway contributes to radioresistance in cancers like colorectal carcinoma, making local recurrence a significant factor in poor patient prognosis.
  • Pre-operative or post-operative radiotherapy aims to enhance radiosensitivity in cancer cells without affecting normal cells; combining multiple chemotherapeutic drugs, such as BI-69A11 and celecoxib, is a common strategy to achieve this.
  • The study highlights that this combination inhibits key repair mechanisms for DNA damage in cancer cells, triggering apoptosis and suggesting a promising therapeutic approach to prevent radioresistance and improve treatment safety for colon cancer patients.
View Article and Find Full Text PDF

BI-69A11, novel Akt inhibitor, is currently drawing much attention due to its intriguing effect in inducing apoptosis in melanoma, breast, prostate and colon cancer. However, earlier reports reveal that PI3K/Akt/mTOR inhibitors promote autophagy at the early stage as a survival mechanism that might affect its apoptotic potential. It is necessary to investigate whether BI-69A11 mediated apoptosis is associated with autophagy for enhancing its therapeutic efficacy.

View Article and Find Full Text PDF

Background: Squamous cell carcinoma of the oral cavity (SCCOC) is the dominant origin of cancer associated mortality. Previous findings by our study reported that acquisition of anoikis resistance has a significant role in tumor progression of oral cavity. Several genes were over-expressed in anoikis-resistant cells under detached conditions which we confirmed earlier by microarray.

View Article and Find Full Text PDF

Despite the recent advances in diagnostic and therapeutic strategies, oral squamous cell carcinoma (OSCC) remains a major health burden. Protein biomarker discovery for early detection will help to improve patient survival rate in OSCC. Mass spectrometry-based proteomics has emerged as an excellent approach for detection of protein biomarkers in various types of cancers.

View Article and Find Full Text PDF

Single drug therapies for cancer are often suboptimal and may not provide long term clinical benefits. To overcome this obstacle for effective treatment the applications of two or more drugs are preferable. A limitation of multidrug use is the varying pharmacokinetics of different drugs.

View Article and Find Full Text PDF

Aim: Thymoquinone (TQ), the predominant bioactive constituent of black seed oil (Nigella Sativa), has been shown to possess antineoplastic activity against multifarious tumors. However, the meticulous mechanism of TQ on Akt mediated survival pathway is still unrevealed in breast cancer. Here, we investigated TQ's mechanism of action against PI3K/Akt signaling and its downstream targets by modulating proteins translational machinery, leading to apoptosis in cancer cells.

View Article and Find Full Text PDF

Thymoquinone (TQ) and diosgenin (DG), the active ingredients obtained from black cumin (Nigella sativa) and fenugreek (Trigonella foenum graecum), respectively, exert potent bioactivity, including anticancer effects. This study investigated the antineoplastic activity of these agents against squamous cell carcinoma in vitro and sarcoma 180-induced tumors in vivo. TQ and DG inhibited cell proliferation and induced cytotoxicity in A431 and Hep2 cells.

View Article and Find Full Text PDF