New Findings: What is the central question of this study? We questioned whether an angiotensin-converting enzyme (ACE) inhibitor prevents skeletal muscle fibrosis in diabetic mice. What is the main finding and its importance? Administration of ACE inhibitor prevents the increase in skeletal muscle fibrosis during the early phase after induction of diabetes by streptozotocin. Our findings might provide a new therapeutic target for skeletal muscle abnormalities in diabetes.
View Article and Find Full Text PDFIn heart failure (HF) management, early ambulation is recommended to prevent physical deconditioning. The effects of delayed ambulation on later clinical outcomes and the factors linked to delayed ambulation in hospitalized HF patients, however, remain unestablished. We retrospectively investigated 101 patients (mean age, 66±17 years) who were hospitalized for acute decompensated HF.
View Article and Find Full Text PDFOxidative stress plays a role in the progression of chronic heart failure (CHF). We investigated whether systemic oxidative stress is linked to exercise intolerance and skeletal muscle abnormalities in patients with CHF. We recruited 30 males: 17 CHF patients, 13 healthy controls.
View Article and Find Full Text PDFBackground: We recently reported that treatment with rhBDNF (recombinant human brain-derived neurotrophic factor) improved the reduced exercise capacity of mice with heart failure (HF) after myocardial infarction (MI). Since BDNF is reported to enhance fatty acid oxidation, we herein conducted an in vivo investigation to determine whether the improvement in exercise capacity is due to the enhancement of the fatty acid oxidation of skeletal muscle via the AMPKα-PGC1α (adenosine monophosphate-activated protein kinase-ɑ-proliferator-activated receptor-r coactivator-1ɑ) axis.
Methods: MI and sham operations were conducted in C57BL/6J mice.
Background: Although type 2 diabetes mellitus (T2DM) is one of the most frequent comorbidities in patients with chronic heart failure (CHF), the effects of T2DM on the exercise capacity of CHF patients are fully unknown. Here, we tested the hypothesis that the coexistence of T2DM lowers CHF patients' peak aerobic capacity.
Methods: We retrospectively analyzed the cases of 275 Japanese CHF patients with non-reduced ejection fraction (left ventricular ejection fraction [LVEF] ≥ 40%) or reduced EF (LVEF < 40%) who underwent cardiopulmonary exercise testing.
Aims: Exercise intolerance in patients with heart failure (HF) is partly attributed to skeletal muscle abnormalities. We have shown that reactive oxygen species (ROS) play a crucial role in skeletal muscle abnormalities, but the pathogenic mechanism remains unclear. Xanthine oxidase (XO) is reported to be an important mediator of ROS overproduction in ischaemic tissue.
View Article and Find Full Text PDFAims: Sarcopenia is characterized by muscle mass and strength loss and reduced physical activity. Branched-chain amino acids (BCAAs) were recently described as an activator of protein synthesis via mammalian target of rapamycin (mTOR) signaling for muscle atrophy. In cardiovascular diseases, excessive activation of the renin-angiotensin system may induce an imbalance of protein synthesis and degradation, and this plays a crucial role in muscle atrophy.
View Article and Find Full Text PDFBackground: Loop diuretics are widely used for the management of fluid retention in patients with heart failure (HF). Sarcopenia, defined as decreased skeletal muscle mass, is frequently present in patients with HF and is associated with poor prognosis. The effects of loop diuretics on skeletal muscle in HF patients have not been fully elucidated.
View Article and Find Full Text PDFHeart failure (HF) is associated with aberrant skeletal muscle impairments, which are closely linked to the severity of HF. A low level of brain-derived neurotrophic factor (BDNF), a myokine produced in the skeletal muscle, is known to be involved in reduced exercise capacity and poor prognosis in HF. However, little is known about the factors or conditions of skeletal muscle associated with BDNF levels.
View Article and Find Full Text PDFDecreased exercise capacity, which is an independent predictor of the poor prognosis of patients with heart failure (HF), is attributed to markedly impaired skeletal muscle mitochondrial function and fatty acid oxidation. Previous studies reported that the administration of an inhibitor of sodium-glucose cotransporter 2 (SGLT2) increases ketone body production and fat utilization in type 2 diabetic mice. In this study, we investigated the effects of SGLT2 inhibitor administration on exercise endurance and skeletal muscle mitochondrial function with fatty acid oxidation in a murine model of HF after the induction of myocardial infarction (MI).
View Article and Find Full Text PDFBackground: Skeletal muscle is quantitatively and qualitatively impaired in patients with heart failure (HF), which is closely linked to lowered exercise capacity. Ultrasonography (US) for skeletal muscle has emerged as a useful, noninvasive tool to evaluate muscle quality and quantity. Here we investigated whether muscle quality based on US-derived echo intensity (EI) is associated with exercise capacity in patients with HF.
View Article and Find Full Text PDFAlthough cardiac involvement is rare in polyneuropathy, organomegaly, endocrinopathy, M protein, and skin changes (POEMS) syndrome, the clinical course becomes considerably worse on complication with cardiac lesions. The increased release of various cytokines has been observed in the pathogenesis of POEMS syndrome, and serum vascular endothelial growth factor (VEGF) levels are known to be associated with the disease activity. We herein report a patient with POEMS syndrome who showed left ventricular systolic dysfunction and was treated with lenalidmide therapy.
View Article and Find Full Text PDF