Publications by authors named "Iou-Sheng Ke"

As part of our continuing interest in redox-active, anion-responsive main-group transition-metal platforms, we have investigated the effect of chloride by fluoride anion substitution on the core structure of a dinuclear AuSb platform. Starting from [(o-(iPr2P)C6H4)2Cl2SbPh]AuCl (2) in which the antimony-bound phenyl group is positioned trans to the gold atom, we found that the introduction of fluoride anions, as in [(o-(iPr2P)C6H4)2F2SbPh]AuCl (3) and [(o-(iPr2P)C6H4)2ClFSbPh]AuCl (4), produces structures in which the phenyl group switches to a perpendicular direction with respect to the gold atom. Replacement of the gold-bound chloride anion in 3 by a fluoride anion can be achieved by successive treatment with TlPF6 and [nBu4N][Ph3SiF2].

View Article and Find Full Text PDF

The tetravalent platinum stiboranyl complex [(o-(Ph2P)C6H4)2(o-C6Cl4O2)Sb]PtCl2Ph (2) has been synthesized by reaction of [(o-(Ph2P)C6H4)2SbClPh]PtCl (1) with o-chloranil. In the presence of fluoride anions, the stiboranyl moiety of 2 displays non-innocent behavior and is readily converted into a fluorostiborane unit. This transformation, which is accompanied by elimination of a chloride ligand from the Pt center, results in the formation of [(o-(Ph2P)C6H4)2(o-C6Cl4O2)SbF]PtClPh (3).

View Article and Find Full Text PDF

In search for new examples of σ-acceptor ligands, we have investigated the tridentate ligands (o-(iPr2P)C6H4)2SbPh) (L(Ph)) and (o-(iPr2P)C6H4)2SbCl) (L(Cl)) which react with (tht)AuCl (tht = tetrahydrothiophene) to afford L(Ph)AuCl (1) and L(Cl)AuCl (2), respectively. As suggested by the structure of these complexes, which confirm complexation of the SbP2 ligands to the gold chloride fragment, and in agreement with the results of the density functional theory (DFT) and natural bond orbital (NBO) calculations, the gold and antimony atom of 1 and 2 are involved in a Au→Sb donor-acceptor interaction. The magnitude of this interaction is higher in complex 2 which possesses a chlorinated and thus more Lewis acidic antimony center.

View Article and Find Full Text PDF

The 9-anthryltriphenylstibonium cation, [1](+), has been synthesized and used as a sensor for the toxic fluoride anion in water. This stibonium cation complexes fluoride ions to afford the corresponding fluorostiborane 1-F. This reaction, which occurs at fluoride concentrations in the parts per million range, is accompanied by a drastic fluorescence turn-on response.

View Article and Find Full Text PDF

BiZness as usual? Not exactly! The bismuth atom of the tridentate diphosphinobismuthine (o-(Ph(2)P)C(6)H(4))(2) BiCl behaves as a Z rather than L ligand when in the coordination sphere of late transition metals such as gold. The σ-acceptor behavior of Bi is supported by its disphenoid coordination geometry and theoretical studies, which show a Au→Bi interaction.

View Article and Find Full Text PDF

Turn on the lantern! The stibine donor ligand of a cationic palladium complex acts as a Lewis acid and reacts with a fluoride anion to afford the corresponding fluorostiboranyl-palladium species (see scheme). Bindung of the fluoride anion to the antimony center induces a change in denticity of the triphosphine unit and leads to a bright-orange trigonal-bipyramidal d(8) lantern complex.

View Article and Find Full Text PDF