Background: Network motifs are small modules that show interesting functional and dynamic properties, and are believed to be the building blocks of complex cellular processes. However, the mechanistic details of such modules are often unknown: there is uncertainty about the motif architecture as well as the functional form and parameter values when converted to ordinary differential equations (ODEs). This translates into a number of candidate models being compatible with the system under study.
View Article and Find Full Text PDFEURASIP J Bioinform Syst Biol
June 2010
Two-level gene regulatory networks consist of the transcription factors (TFs) in the top level and their regulated genes in the second level. The expression profiles of the regulated genes are the observed high-throughput data given by experiments such as microarrays. The activity profiles of the TFs are treated as hidden variables as well as the connectivity matrix that indicates the regulatory relationships of TFs with their regulated genes.
View Article and Find Full Text PDFBMC Bioinformatics
February 2007
Background: Most existing algorithms for the inference of the structure of gene regulatory networks from gene expression data assume that the activity levels of transcription factors (TFs) are proportional to their mRNA levels. This assumption is invalid for most biological systems. However, one might be able to reconstruct unobserved activity profiles of TFs from the expression profiles of target genes.
View Article and Find Full Text PDFBioinformatics
November 2004
Motivation: The analysis of high-throughput experimental data, for example from microarray experiments, is currently seen as a promising way of finding regulatory relationships between genes. Bayesian networks have been suggested for learning gene regulatory networks from observational data. Not all causal relationships can be inferred from correlation data alone.
View Article and Find Full Text PDF