Quite recently, a semi-analytical approach to the sounding of multiply scattering media (clouds, seawaters) using multiple-field-of-view and CCD lidars with polarization devices was developed. The angular distributions of polarized components of the lidar returns from multiply scattering media computed on the basis of this theory using the small-angle approximation are presented and discussed. The semi-analytical nature of the solution makes the computation procedure faster.
View Article and Find Full Text PDFA new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components.
View Article and Find Full Text PDFThe development of a simple model of the seawater inherent optical properties (IOPs) associated with bubbles and sediments would represent a great advance in surf zone optics. We present one solution for this problem using a combination of geometrical optics and Fraunhofer diffraction. An analytic model of the IOPs of bubbles and sediments (the extinction and absorption coefficients, and phase function) is developed in terms of the moments of the particle size distribution and the complex refractive index of particles.
View Article and Find Full Text PDFLaser systems have been developed to image underwater objects. However, the performance of these systems can be severely degraded in turbid water. We have developed a technique using modulated light to improve underwater detection and imaging.
View Article and Find Full Text PDF