A new concept for shortening hard X-ray pulses emitted from a third-generation synchrotron source down to few picoseconds is presented. The device, called the PicoSwitch, exploits the dynamics of coherent acoustic phonons in a photo-excited thin film. A characterization of the structure demonstrates switching times of ≤ 5 ps and a peak reflectivity of ∼10(-3).
View Article and Find Full Text PDFSpatially resolved polarization switching in ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model.
View Article and Find Full Text PDFUnlabelled: Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe(2)O(4) (NFO) and FE PbZr(0.52)Ti(0.
View Article and Find Full Text PDFWe demonstrate an approach for probing nonlinear electromechanical responses in BiFeO(3) thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO(3) film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures.
View Article and Find Full Text PDFLow-dimensional ferroelectric structures are a promising basis for the next generation of ultrahigh-density nonvolatile memory devices. Depolarization fields, created by incompletely compensated charges at the surfaces and interfaces, depress the polarization of such structures. Theory suggests that under conditions of uncompensated surface charges, local dipoles can organize in flux-closure structures in thin films and vortex structures in nano-sized ferroelectrics, reducing depolarization fields.
View Article and Find Full Text PDFMacroscopic ferroelectric polarization switching, similar to other first-order phase transitions, is controlled by nucleation centres. Despite 50 years of extensive theoretical and experimental effort, the microstructural origins of the Landauer paradox, that is, the experimentally observed low values of coercive fields in ferroelectrics corresponding to implausibly large nucleation activation energies, are still a mystery. Here, we develop an approach to visualize the nucleation centres controlling polarization switching processes with nanometre resolution, determine their spatial and energy distribution and correlate them to local microstructure.
View Article and Find Full Text PDFFerroelectrics are materials exhibiting spontaneous electric polarization due to dipoles formed by displacements of charged ions inside the crystal unit cell. Their exceptional properties are exploited in a variety of microelectronic applications. As ferroelectricity is strongly influenced by surfaces, interfaces and domain boundaries, there is great interest in exploring how the local atomic structure affects the electric properties.
View Article and Find Full Text PDF