Publications by authors named "Ionela Rusu"

The complex dielectric permittivity of a series of spin crossover complexes, with variable ligand stoichiometry [Fe(Htrz) (trz) (NHtrz) ](BF) ·nHO, has been investigated as a function of temperature in a wide frequency range. In each compound, a substantial drop of the conductivity and permittivity is evidenced when going from the low spin to the high spin state, albeit with decreasing amplitude for increasing ligand substitution (i.e.

View Article and Find Full Text PDF

We report on the effect of hydrostatic pressure on the electrical conductivity and dielectric permittivity of the [Fe(Htrz)(trz)](BF) (Htrz = 1H-1,2,4,-triazole) spin crossover complex. Variable-temperature and -pressure broad-band impedance spectrometry revealed a piezoresistive effect of more than 1 order of magnitude for pressures as low as 500 bar, associated with a large pressure-induced hysteresis of 1700 bar. The origin of the piezoresistive effect has been attributed to the pressure-induced spin state switching in the complex, and the associated P,T phase diagram was determined.

View Article and Find Full Text PDF

A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2⋅2 H2O (1⋅2 H2O), whose precursor βAlatrz, (1,2,4-triazol-4-yl-propionate) has been tailored from a β-amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), (57)Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two-step spin crossover (T1/2(↓) = 230 K and T1/2(↑) = 235 K, and T1/2(↓) = 172 K and T1/2(↑) = 188 K, respectively) is registered for the first time for a 1,2,4-triazole-based Fe(II) 1D coordination polymer. The two-step SCO configuration is observed in a 1:2 ratio of low-spin/high-spin in the intermediate phase for a 1D chain.

View Article and Find Full Text PDF