Publications by authors named "Ionel Stavarache"

CuZnSnSe (CZTSe) is a promising material for thin-film solar cells due to its suitable band gap, high absorption coefficient, and composition of earth-abundant and nontoxic elements. In this study, we prepared CZTSe thin films from Cu/SnSe and ZnSe stacks using a two-step annealing process. Initially, Cu-Sn-Se (CTSe) films were synthesized by sequential deposition and annealing of Cu and SnSe precursors in either a selenium (Se) or tin-selenium (Sn+Se) atmosphere.

View Article and Find Full Text PDF

SiGeSn nanocrystals (NCs) in oxides are of considerable interest for photo-effect applications due to the fine-tuning of the optical bandgap by quantum confinement in NCs. We present a detailed study regarding the silicon germanium tin (SiGeSn) NCs embedded in a nanocrystalline hafnium oxide (HfO) matrix fabricated by using magnetron co-sputtering deposition at room temperature and rapid thermal annealing (RTA). The NCs were formed at temperatures in the range of 500-800 °C.

View Article and Find Full Text PDF

Lately, there is a growing interest in organic photovoltaic (OPV) cells due to the organic materials' properties and compatibility with various types of substrates. However, their efficiencies are low relative to the silicon ones; therefore, other ways (i.e.

View Article and Find Full Text PDF

CuZnSnS (CZTS) is regarded as one of the emerging materials for next-generation thin film solar cells. However, its synthesis is complex, and obtaining a single-phase CZTS thin film is difficult. This work reports the elaboration of CuZnSnS thin films by a sequential magnetron sputtering deposition of CuSnS (CTS) and ZnS as stacked films.

View Article and Find Full Text PDF

One of the key elements in assessing traffic safety on the roads is the detection of asphalt conditions. In this paper, we propose an optical sensor based on GeSi nanocrystals embedded in SiO matrix that discriminates between different slippery road conditions (wet and icy asphalt and asphalt covered with dirty ice) in respect to dry asphalt. The sensor is fabricated by magnetron sputtering deposition followed by rapid thermal annealing.

View Article and Find Full Text PDF

Films of SiGe nanocrystals (NCs) in oxide have the advantage of tuning the energy band gap by adjusting SiGe NCs composition and size. In this study, SiGe-SiO amorphous films were deposited by magnetron sputtering on Si substrate followed by rapid thermal annealing at 700, 800 and 1000 °C. We investigated films with Si:Ge:SiO compositions of 25:25:50 vol.

View Article and Find Full Text PDF

Multilayer structures comprising of SiO/SiGe/SiO and containing SiGe nanoparticles were obtained by depositing SiO layers using reactive direct current magnetron sputtering (dcMS), whereas, Si and Ge were co-sputtered using dcMS and high-power impulse magnetron sputtering (HiPIMS). The as-grown structures subsequently underwent rapid thermal annealing (550-900 °C for 1 min) in N ambient atmosphere. The structures were investigated using X-ray diffraction, high-resolution transmission electron microscopy together with spectral photocurrent measurements, to explore structural changes and corresponding properties.

View Article and Find Full Text PDF

In this work, rapid thermal annealing (RTA) was applied to indium tin oxide (ITO) films in ambient atmosphere, resulting in significant improvements of the quality of the ITO films that are commonly used as conductive transparent electrodes for photovoltaic structures. Starting from a single sintered target (purity 99.95%), ITO thin films of predefined thickness (230 nm, 300 nm and 370 nm) were deposited at room temperature by radio-frequency magnetron sputtering (rfMS).

View Article and Find Full Text PDF

In this work we prepared films of amorphous germanium nanoparticles embedded in SiO deposited by magnetron sputtering on Si and quartz heated substrates at 300, 400 and 500 °C. Structure, morphology, optical, electrical and photoconduction properties of all films were investigated. The Ge concentration in the depth of the films is strongly dependent on the deposition temperature.

View Article and Find Full Text PDF

Arrays of magnetic Ni-Cu alloy nanowires with different compositions were prepared by a template-replication technique using electrochemical deposition into polycarbonate nanoporous membranes. Photolithography was employed for obtaining interdigitated metallic electrode systems of Ti/Au onto SiO/Si substrates and subsequent electron beam lithography was used for contacting single nanowires in order to investigate their galvano-magnetic properties. The results of the magnetoresistance measurements made on single Ni-Cu alloy nanowires of different compositions have been reported and discussed in detail.

View Article and Find Full Text PDF

Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO. Crystalline Ge nanoparticles were directly formed during co-deposition of SiO and Ge on substrates at 300, 400 and 500 °C.

View Article and Find Full Text PDF

Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10-30 mJ/cm(2). The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2.

View Article and Find Full Text PDF

The electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride is studied by measuring the voltage and temperature dependences of the current. The microstructure of the network is investigated by cross-sectional transmission electron microscopy. The multi-walled carbon nanotube network has an uniform spatial extension in the silicon nitride matrix.

View Article and Find Full Text PDF