An overview of the total transcriptome, described previously by our research group, pointed some noncoding RNA (ncRNA) as participants in the restoration of hair-root phenotype in mutants, leading us to a deeper investigation. A transcriptional gene expression profiling of seedling roots was performed aiming to identify ncRNA responsive to nitric oxide (GSNO) and auxin (IAA), and their involvement in root hair formation in the null mutant. We identified 3,631 ncRNAs, including new ones, in and differential expression (DE) analysis between the following: 1) GSNO-treated vs.
View Article and Find Full Text PDFExogenous supply of nitric oxide (NO) increases drought tolerance in sugarcane plants. However, little is known about the role of NO produced by plants under water deficit. The aim of this study was to test the hypothesis that drought-tolerance in sugarcane is associated with NO production and metabolism, with the more drought-tolerant genotype presenting higher NO accumulation in plant tissues.
View Article and Find Full Text PDFWater deficit is a major environmental constraint on crop productivity and performance and nitric oxide (NO) is an important signaling molecule associated with many biochemical and physiological processes in plants under stressful conditions. This study aims to test the hypothesis that leaf spraying of S-nitrosoglutathione (GSNO), an NO donor, improves the antioxidant defense in both roots and leaves of sugarcane plants under water deficit, with positive consequences for photosynthesis. In addition, the roles of key photosynthetic enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) in maintaining CO assimilation of GSNO-sprayed plants under water deficit were evaluated.
View Article and Find Full Text PDFNew Phytol
March 2017
Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant.
View Article and Find Full Text PDFNitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions.
View Article and Find Full Text PDFNitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO).
View Article and Find Full Text PDFCarbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies at the whole-plant level are still lacking. Here, the content of amino acids, organic acids, total soluble sugars, starch, and phenylpropanoids in the leaves, roots, and floral buds of a nitrate reductase (NR) double-deficient mutant of Arabidopsis thaliana (nia1 nia2) were compared to those of wild-type plants.
View Article and Find Full Text PDFNitrate reductase (NR) has emerged as a potential NO source in plants. Indeed, the Arabidopsis thaliana NR double-deficient mutant (nia1 nia2) produces low NO and develops abnormal susceptibility to bacterial infection. We have employed quantitative real-time polymerase chain reactions to analyze the effects of NO gas on the expression of defense-related genes in wild-type and nia1 nia2 A.
View Article and Find Full Text PDFNitrate increases the tolerance of plants to hypoxia, although the mechanisms related to this beneficial effect are still unclear. Recently, we observed that cultivation of soybean plants with nitrate reduced hypoxic accumulation of fermentation end products by isolated root segments compared with the ammonium treatment. Interestingly, the same decrease in the intensity of fermentation was detected when ammonium-grown root segments were incubated with nitrite, suggesting the involvement of this anion in the nitrate-mediated modulation of fermentative metabolism.
View Article and Find Full Text PDFThe enzyme S-nitrosoglutathione reductase (GSNOR) has an important role in the metabolism of S-nitrosothiols (SNO) and, consequently, in the modulation of nitric oxide (NO)-mediated processes. Although the mitochondrial electron transport chain is an important target of NO, the role of GSNOR in the functionality of plant mitochondria has not been addressed. Here, we measured SNO content and NO emission in Arabidopsis thaliana cell suspension cultures of wild-type (WT) and GSNOR overexpressing (GSNOR(OE)) or antisense (GSNOR(AS)) transgenic lines, grown under optimal conditions and under nutritional stress.
View Article and Find Full Text PDFIt is widely accepted that nitrate but not ammonium improves tolerance of plants to hypoxic stress, although the mechanisms related to this beneficial effect are not well understood. Recently, nitrite derived from nitrate reduction has emerged as the major substrate for the synthesis of nitric oxide (NO), an important signaling molecule in plants. Here, we analyzed the effect of different nitrogen sources (nitrate, nitrite and ammonium) on the metabolic response and NO production of soybean roots under hypoxia.
View Article and Find Full Text PDFThe tropical pathogen Moniliophthora perniciosa causes witches' broom disease in cacao. As a hemibiotrophic fungus, it initially colonizes the living host tissues (biotrophic phase), and later grows over the dead plant (necrotrophic phase). Little is known about the mechanisms that promote these distinct fungal phases or mediate the transition between them.
View Article and Find Full Text PDFThis study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased •NO formation at acidic pH at values that were 7.1 and 4.
View Article and Find Full Text PDFMitochondria recently have emerged as important sites in controlling NO levels within the cell. In this study, the synthesis of nitric oxide (NO) from nitrite and its degradation by mitochondria isolated from Arabidopsis thaliana were examined. Oxygen and NO concentrations in the reaction medium were measured with specific electrodes.
View Article and Find Full Text PDFMitochondria consume nitric oxide (NO) mainly through reaction with superoxide anion (O(2)(-)). Here, we analyzed the O(2)(-) sources for NO degradation by isolated rat liver mitochondria. Electron leakage from complex III and reverse electron transport to complex I accounted for O(2)(-)-dependent NO degradation by mitochondria in the presence of a protonmotive force.
View Article and Find Full Text PDFGoniothalamin is a styryllactone synthesized by plants of the genus Goniothalamus. The biological activities of this molecule, particularly its anti-protozoan, anti-fungal, and larvicidal properties, have received considerable attention. In this work, we investigated the action of the natural and synthetic enantiomers (R)-goniothalamin (1) and (S)-goniothalamin (ent-1) on cell viability, nitric oxide synthase (NOS) expression and activity, and the expression of selected proteins involved in apoptosis and autophagy in renal cancer cells.
View Article and Find Full Text PDFThe mechanisms of nitric oxide (NO) synthesis in plants have been extensively investigated. NO degradation can be just as important as its synthesis in controlling steady-state levels of NO. Here, we examined NO degradation in mitochondria isolated from potato tubers and the contribution of the respiratory chain to this process.
View Article and Find Full Text PDFCell Tissue Res
July 2007
Chronic treatment of rats with N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension mediated partly by enhanced angiotensin-I-converting enzyme (ACE) activity. We examined the influence of L-NAME on rat liver morphology, on hepatic glycogen, cholesterol, and triglyceride content, and on the activities of the cytochrome P450 isoforms CYP1A1/2, CYP2B1/2, CYP2C11, and CYP2E1. Male Wistar rats were treated with L-NAME (20 mg/rat per day via drinking water) for 2, 4, and 8 weeks, and their livers were then removed for analysis.
View Article and Find Full Text PDFBackground: The aim of the present work was to evaluate the effect of a hexane crude extract (HCE) of Pterodon emarginatus on the oxidative and nitrosative stress induced in skeletal muscle, liver and brain of acutely exercised rats.
Methods: Adult male rats were subjected to acute exercise by standardized contractions of the tibialis anterior (TA) muscle (100 Hz, 15 min) and treated orally with the HCE (once or three times with a fixed dose of 498 mg/kg), before and after acute exercise. Serum creatine kinase activity was determined by a kinetic method and macrophage infiltration by histological analyses of TA muscle.
The origin of nitric oxide (*NO) in plants is unclear and an *NO synthase (NOS)-like enzyme and nitrate reductase (NR) are claimed as potential sources. Here we used wild-type and NR-defective double mutant plants to investigate *NO production in Arabidopsis thaliana in response to Pseudomonas syringae pv maculicola. NOS activity increased substantially in leaves inoculated with P.
View Article and Find Full Text PDFBackground: The anti-inflammatory properties of some flavonoids have been attributed to their ability to inhibit the production of NO by activated macrophages. Soybean cotyledons accumulate certain flavonoids following elicitation with an extract of the fungal pathogen Diaporthe phaseolorum f. sp.
View Article and Find Full Text PDFPhytoalexin biosynthesis is part of the defense mechanism of soybean (Glycine max) plants against attack by the fungus Diaporthe phaseolorum f. sp. meridionalis (Dpm), the causal agent of stem canker disease.
View Article and Find Full Text PDFIn the present study, we investigated the involvement of the mitochondrial permeability transition pore (PTP) in nitric oxide (NO)-induced plant cell death. NO donors such as sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine inhibited growth and caused death in suspension-cultured cells of Citrus sinensis. Cells treated with SNP showed chromatin condensation and fragmentation, characteristic of apoptosis.
View Article and Find Full Text PDF