Publications by authors named "Ion Stiharu"

This review paper delves into the realm of hybrid cellulose-based materials and their applications in 2D nano-delivery systems. Cellulose, recognized for its biocompatibility, versatility, and renewability, serves as the core matrix for these nanomaterials. The paper offers a comprehensive overview of the latest advancements in the creation, analysis, and application of these materials, emphasizing their significance in nanotechnology and biomedical domains.

View Article and Find Full Text PDF

This review paper provides an in-depth analysis of recent advancements in integrating two-dimensional (2D) materials with cellulose to enhance biosensing technology. The incorporation of 2D materials such as graphene and transition metal dichalcogenides, along with nanocellulose, improves the sensitivity, stability, and flexibility of biosensors. Practical applications of these advanced biosensors are explored in fields like medical diagnostics and environmental monitoring.

View Article and Find Full Text PDF

Polymer-derived SiCNFe ceramics is a prospective material that can be used as soft magnets in MEMS magnetic applications. The optimal synthesis process and low-cost appropriate microfabrication should be developed for best result. Homogeneous and uniform magnetic material is required for developing such MEMS devices.

View Article and Find Full Text PDF

Recent years have witnessed an increased interest in the development of nanoparticles (NPs) owing to their potential use in a wide variety of biomedical applications, including drug delivery, imaging agents, gene therapy, and vaccines, where recently, lipid nanoparticle mRNA-based vaccines were developed to prevent SARS-CoV-2 causing COVID-19. NPs typically fall into two broad categories: organic and inorganic. Organic NPs mainly include lipid-based and polymer-based nanoparticles, such as liposomes, solid lipid nanoparticles, polymersomes, dendrimers, and polymer micelles.

View Article and Find Full Text PDF

This paper utilizes response surface methodology (RSM) design-based analyses to optimize starch-based wound dressings that were characterized based on weight loss (WL%), swelling index (SI%), and mechanical strength (TS). The wound-dressing materials were prepared by employing a modified casting method, using various concentrations of starch (0.5-2 /%), polyvinyl alcohol (PVA) (0.

View Article and Find Full Text PDF

In this study, eco-friendly and transparent starch-based/polyvinyl alcohol/citric acid composite films are evaluated for their efficacy as wound dressing materials. The starch/polyvinyl alcohol (PVA) materials with added citric acid (0.46-1.

View Article and Find Full Text PDF

Artificial neural networks (ANN) and data analysis (DA) are powerful tools for supporting decision-making. They are employed in diverse fields, and one of them is nanotechnology; for example, in predicting silver nanoparticles size. To our knowledge, we are the first to use ANN to predict liposome size (LZ).

View Article and Find Full Text PDF

The shape and dimensions of a micromixer are key elements in the mixing process. Accurately quantifying the mixing efficiency enables the evaluation of the performance of a micromixer and the selection of the most suitable one for specific applications. In this paper, two methods are investigated to evaluate the mixing efficiency: a numerical model and an experimental model with a software image processing technique.

View Article and Find Full Text PDF

Liposomes encapsulate different substances ranging from drugs to genes. Control over the average size and size distribution of these nanoparticles is vital for biomedical applications since these characteristics determine to a high degree where liposomes will accumulate in the human body. Micromixers enable the continuous flow synthesis of liposomes, improving size control and reproducibility.

View Article and Find Full Text PDF

Liposomes are versatile particles used in the biomedical field as drug delivery systems (DDS). Liposome production using micromixers have shown to yield nanoparticles for DDS in a single step with a controllable size by changing flow conditions. Nonetheless, other factors such as the organic solvent, play a crucial role in the liposome formation process.

View Article and Find Full Text PDF

Liposomes nanoparticles (LNPs) are vesicles that encapsulate drugs, genes, and imaging labels for advanced delivery applications. Control and tuning liposome physicochemical characteristics such as size, size distribution, and zeta potential are crucial for their functionality. Liposome production using micromixers has shown better control over liposome characteristics compared with classical approaches.

View Article and Find Full Text PDF

An original and simple fabrication process to produce thin porous metal films on selected substrates is reported. The fabrication process includes the deposition of a thin layer of gold on a substrate, spin coating of a graphene oxide dispersion, etching the gold film through the graphene oxide layer, and removing the graphene oxide layer. The porosity of the thin gold film is controlled by varying the etching time, the thickness of the gold film, and the concentration of the graphene oxide dispersion.

View Article and Find Full Text PDF

This article documents the effect of dielectrophoresis on living cells. Given the longer duration procedures performed on microfluidic platforms, the influence of electric fields of high intensity may be of interest in manipulations other than dielectrophoresis. The crossover frequencies of several cell lines were experimentally determined using a microfluidic device.

View Article and Find Full Text PDF

In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams.

View Article and Find Full Text PDF

We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are considered one of the most interesting materials in the 21st century due to their unique physiochemical characteristics and applicability to various industrial products and medical applications. However, in the last few years, questions have been raised regarding the potential toxicity of CNTs to humans and the environment; it is believed that the physiochemical characteristics of these materials are key determinants of CNT interaction with living cells and hence determine their toxicity in humans and other organisms as well as their embryos. Thus, several recent studies, including ours, pointed out that CNTs have cytotoxic effects on human and animal cells, which occur via the alteration of key regulator genes of cell proliferation, apoptosis, survival, cell-cell adhesion, and angiogenesis.

View Article and Find Full Text PDF

Unlabelled: In order to investigate the effect of SWCNTs in the embryo, we examined the outcome of SWCNTs in avian embryo at an early stage of development. We found that SWCNTs-treatment inhibits the angiogenesis of the chorioallantoic membrane (CAM) and in the chicken embryo. Moreover, we showed that SWCNTs can harm the normal development of the embryo since all SWCNTs-exposed embryos are smaller in comparison with their matched controls.

View Article and Find Full Text PDF

In our laboratory, we recently developed a new technique to measure cell proliferation that is based on infrared spectro-photometry and the density of cell culture medium. The fluid exchange between intra and extra cellular environments is the key to our method. Using this technique, we found that cell proliferation assessment may be performed much faster than presently existing methods, using two separate pieces of equipment (a cell culture incubator and an interferometer).

View Article and Find Full Text PDF

Micro cantilever beams have been intensively used in sensing applications including to scanning profiles and surfaces where there resolution and imaging speed are critical. Force resolution is related to the Q-factor. When the micro-cantilever operates in air with small separation gaps, the Q-factor is even more reduced due to the squeeze-film damping effect.

View Article and Find Full Text PDF

In a microbiological device, cell or particle manipulation and characterization require the use of electric field on different electrodes in several configurations and shapes. To efficiently design microelectrodes within a microfluidic channel for dielectrophoresis focusing, manipulation and characterization of cells, the designer will seek the exact distribution of the electric potential, electric field and hence dielectrophoresis force exerted on the cell within the microdevice. In this paper we describe the approach attaining the analytical solution of the dielectrophoretic force expression within a microchannel with parallel facing same size electrodes present on the two faces of channel substrates, with opposite voltages on the pair electrodes.

View Article and Find Full Text PDF

In this paper, a method for continuous flow separation of circulating malignant cells from blood in a microfluidic device using dielectrophoresis is discussed. Separation of MDA231 breast cancer cells after mixing with normal blood cells was achieved with a level of accuracy that enabled precise counting of the malignant cells, separation and eventually, sub-culturing. MDA231 cells were separated from the blood to a daughter channel using two pairs of interdigitated activated comb-like electrode structures.

View Article and Find Full Text PDF

To identify genes affected by single-walled carbon nanotubes (SWCNTs) in human normal lung cells, we compared the gene expression profiles of untreated human normal bronchial epithelial (HNBE) cells to profiles of HNBE cells treated with SWCNTs. A complementary DNA microarray analysis consisting of 54,675 human genes revealed marked changes in the expression of 14,294 genes, with 7,029 genes being upregulated and 7,265 being downregulated. This comprehensive list of genes included those associated with cell cycle, apoptosis, cell survival, cell adhesion and motility, signal transduction, and transcription regulation.

View Article and Find Full Text PDF

Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature.

View Article and Find Full Text PDF

Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary.

View Article and Find Full Text PDF

Microfabrication limitations are of concern especially for suspended Micro-Electro-Mechanical-Systems (MEMS) microstructures such as cantilevers. The static anddynamic qualities of such microscale devices are directly related to the invariant and variantproperties of the microsystem. Among the invariant properties, microfabrication limitationscan be quantified only after the fabrication of the device through testing.

View Article and Find Full Text PDF