A paramagnetic AB-type Mn(III)-porphyrin was synthesized and characterized by physical-chemical methods (UV-Vis, FT-IR, H-NMR spectroscopy). The obtained compound was tested as a sensitive material for the spectrophotometric and potentiometric detection of iodine species. Using UV-Vis spectroscopy, the triiodide anions could be detected with high precision in the concentration interval of 1.
View Article and Find Full Text PDFMonitoring antibiotic retention in human body fluids after treatment and controlling heavy metal content in water are important requirements for a healthy society. Therefore, the approach proposed in this study is based on developing new optical sensors using porphyrin or its bifunctional hybrid materials made with AuNPs to accomplish the accurate detection of chloramphenicol and cobalt. To produce the new optical chloramphenicol sensors, 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine (TBAP) was used, both alone in an acid medium and as a hybrid material with AuNPs in a water-DMSO acidified environment.
View Article and Find Full Text PDFThe multifunctionality of an AB mixed-substituted porphyrin, namely 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl)porphyrin (5-COOH-3MPP), was proven due to its capacity to detect procaine by different methods, depending on the polymer matrix in which it is incorporated. The hybrid nanomaterial containing k-carrageenan and AuNPs (5-COOH-3MPP-k-carrageenan-AuNPs) was able to optically detect procaine in the concentration range from 5.76 × 10 M to 2.
View Article and Find Full Text PDFDesigning appropriate materials destined for the removal of dyes from waste waters represents a great challenge for achieving a sustainable society. Three partnerships were set up to obtain novel adsorbents with tailored optoelectronic properties using silica matrices, ZnNbO oxide doped with Eu, and a symmetrical amino-substituted porphyrin. The pseudo-binary oxide with the formula ZnNbO was obtained by the solid-state method.
View Article and Find Full Text PDFPorphyrins are versatile structures capable of acting in multiple ways. A mixed substituted AB porphyrin, 5-(3-hydroxy-phenyl)-10,15,20-tris-(3-methoxy-phenyl)-porphyrin and its Pt(II) complex, were synthesised and fully characterised by H- and C-NMR, TLC, UV-Vis, FT-IR, fluorescence, AFM, TEM and SEM with EDX microscopy, both in organic solvents and in acidic mediums. The pure compounds were used, firstly, as sensitive materials for sensitive and selective optical and fluorescence detection of hydroquinone with the best results in the range 0.
View Article and Find Full Text PDFThe purpose of this research is to meet current technical and ecological challenges by developing novel steel coating systems specifically designed for mechanical equipment used in aggressive acid conditions. Homogeneous sandwich-type layered films on the surface of steel electrodes were realized using a pseudo-binary oxide, MnTaO, and two different substituted porphyrin derivatives, namely: 5-(4-carboxy-phenyl)-10,15,20-tris (4-methyl-phenyl)-porphyrin and 5-(4-methyl-benzoate)-10,15,20-tris (4-methyl-phenyl)-porphyrin, which are novel investigated compound pairs. Two suitable laser strategies, pulsed laser deposition (PLD) and matrix-assisted pulsed laser evaporation (MAPLE), were applied in order to prevent porphyrin decomposition and to create smooth layers with low porosity that are extremely adherent to the surface of steel.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2021
Hybrid materials, with applications in fuchsine B color removal from wastewaters, were obtained by in situ incorporation of platinum nanoparticles and/or Pt-porphyrin derivatives into silica matrices. The inorganic silica matrices were synthesized by the sol-gel method, conducted in acid-base catalysis in two steps and further characterized by Nitrogen porosimetry, Small Angle Neutron Scattering (SANS), Scanning electron microscopy, Atomic force microscopy and UV-vis spectroscopy. All of the investigated silica hybrid materials were 100% efficient in removing fuchsine B if concentrations were lower than 1 × 10 M.
View Article and Find Full Text PDFMultifunctional hybrid materials with applications in gas sensing or dye removal from wastewaters were obtained by incorporation into silica matrices of either Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin (PtTAOPP) or platinum nanoparticles (PtNPs) alone or accompanied by 5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin (TAOPP). The tetraethylorthosilicate (TEOS)-based silica matrices were obtained by using the sol-gel method performed in two step acid-base catalysis. Optical, structural and morphological properties of the hybrid materials were determined and compared by UV-vis, fluorescence and FT-IR spectroscopy techniques, by atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) and by Brunauer-Emmett-Teller (BET) analysis.
View Article and Find Full Text PDF