Publications by authors named "Ion Cirstea"

Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1 by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1-specific disease mechanism provoking cardiac hypertrophy.

View Article and Find Full Text PDF
Article Synopsis
  • * The 8th International RASopathies Symposium highlighted global cooperation in clinical care and research, focusing on building diverse patient groups and sharing discoveries to prepare for future interventional trials.
  • * The event included presentations from various stakeholders, including scientists and self-advocates, aimed at bridging knowledge gaps and fostering long-term research and advocacy partnerships to improve health outcomes for those with RASopathies.
View Article and Find Full Text PDF

SARS-CoV-2 triggered the most severe pandemic of recent times. To enter into a host cell, SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2). However, subsequent studies indicated that other cell membrane receptors may act as virus-binding partners.

View Article and Find Full Text PDF
Article Synopsis
  • Noonan syndrome (NS), a common genetic disorder linked to the RAS-MAPK pathway, is associated with variants like the Ser257Leu substitution in RAF1, which is particularly connected to severe heart disease (HCM).
  • Researchers created three-dimensional cardiac models from stem cells of NS patients with specific RAF1 mutations to study the relationship between these genetic changes and heart tissue abnormalities.
  • Findings showed that the mutated RAF1 caused changes in heart cell structure, shortening of key protein elements, and impaired heart function, but these issues could partially be reversed by inhibiting the MEK pathway.
View Article and Find Full Text PDF

Constitutively activated rat sarcoma (RAS) GTPases are one of the major drivers of tumor growth and are difficult drug targets. The glucocorticoid receptor (GR), a nuclear receptor primarily acting in the nucleus, is a potent modulator of inflammation and regulator of metabolism and cell growth. Emerging evidence has revealed that GR modulates RAS-dependent signaling and RAS activation.

View Article and Find Full Text PDF

RAS GTPases are ubiquitous GDP/GTP-binding proteins that function as molecular switches in cellular signalling and control numerous signalling pathways and biological processes. Pathogenic mutations in genes severely affect cellular homeostasis, leading to cancer when occurring in somatic cells and developmental disorders when the germline is affected. These disorders are generally termed as RASopathies and among them Costello syndrome (CS) is a distinctive entity that is caused by specific germline mutations.

View Article and Find Full Text PDF

Identification of regulators of osteoblastogenesis that can be pharmacologically targeted is a major goal in combating osteoporosis, a common disease of the elderly population. Here, unbiased kinome RNAi screening in primary murine osteoblasts identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation in both murine and human preosteoblastic cells. Cdk5 knockdown by siRNA, genetic deletion using the Cre-loxP system, or inhibition with the small molecule roscovitine enhanced osteoblastogenesis in vitro.

View Article and Find Full Text PDF

Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells.

View Article and Find Full Text PDF

Purpose: Endochondral ossification, which involves transdifferentiation of chondrocytes into osteoblasts, is an important process involved in the development and postnatal growth of most vertebrate bones as well as in bone fracture healing. To study the basic molecular mechanisms of this process, a robust and easy-to-use in vitro model is desirable. Therefore, we aimed to develop a standardized in vitro assay for the transdifferentiation of chondrogenic cells towards the osteogenic lineage.

View Article and Find Full Text PDF

Costello syndrome (CS), characterized by a developmental delay and a failure to thrive, is also associated with an impaired lipid and energy metabolism. White adipose tissue is a central sensor of whole-body energy homeostasis, and HRAS hyperactivation may affect adipocyte differentiation and mature adipocyte homeostasis. An extremely useful tool for delineating in vitro intrinsic cellular signaling leading to metabolic alterations during adipogenesis is mouse embryonic fibroblasts, known to differentiate into adipocytes in response to adipogenesis-stimulating factors.

View Article and Find Full Text PDF

Senescence is a biological process that induces a permanent cell cycle arrest and a specific gene expression program in response to various stressors. Following studies over the last few decades, the concept of senescence has evolved from an antiproliferative mechanism in cancer (oncogene-induced senescence) to a critical component of physiological processes associated with embryonic development, tissue regeneration, ageing and its associated diseases. In somatic cells, oncogenic mutations in RAS-MAPK pathway genes are associated with oncogene-induced senescence and cancer, while germline mutations in the same pathway are linked to a group of monogenic developmental disorders generally termed RASopathies.

View Article and Find Full Text PDF

The liver, through the production of iron hormone hepcidin, controls body iron levels. High liver iron levels and deregulated hepcidin expression are commonly observed in many liver diseases including highly prevalent genetic iron overload disorders. In spite of a number of breakthrough investigations into the signals that control hepcidin expression, little progress has been made towards investigations into intracellular signaling in the liver under excess of iron.

View Article and Find Full Text PDF

Noonan syndrome (NS), the most common RASopathy, is caused by mutations affecting signaling through RAS and the MAPK cascade. Recently, genome scanning has discovered novel genes implicated in NS, whose function in RAS-MAPK signaling remains obscure, suggesting the existence of unrecognized circuits contributing to signal modulation in this pathway. Among these genes, leucine zipper-like transcriptional regulator 1 (LZTR1) encodes a functionally poorly characterized member of the BTB/POZ protein superfamily.

View Article and Find Full Text PDF

RASopathies are a group of rare, clinically related conditions affecting development and growth, and are caused by germline mutations in genes encoding signal transducers and modulators with a role in the RAS signaling network. These disorders share facial dysmorphia, short stature, variable cognitive deficits, skeletal and cardiac defects, and a variable predisposition to malignancies. Here, we report on a de novo 10-nucleotide-long deletion in HRAS (c.

View Article and Find Full Text PDF

E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the molecular mechanism of E-RAS regulation and function with respect to its sequence and structural features.

View Article and Find Full Text PDF

Small Rho GTPases are well known to regulate a variety of cellular processes by acting as molecular switches. The regulatory function of Rho GTPases is critically dependent on their posttranslational modification at the carboxyl terminus by isoprenylation and association with proper cellular membranes. Despite numerous studies, the mechanisms of recycling and functional integration of Rho GTPases at the biological membranes are largely unclear.

View Article and Find Full Text PDF

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.

View Article and Find Full Text PDF

The three deleted in liver cancer genes (DLC1-3) encode Rho-specific GTPase-activating proteins (RhoGAPs). Their expression is frequently silenced in a variety of cancers. The RhoGAP activity, which is required for full DLC-dependent tumor suppressor activity, can be inhibited by the Src homology 3 (SH3) domain of a Ras-specific GAP (p120RasGAP).

View Article and Find Full Text PDF

Activating somatic and germline mutations of closely related RAS genes (H, K, N) have been found in various types of cancer and in patients with developmental disorders, respectively. The involvement of the RAS signalling pathways in developmental disorders has recently emerged as one of the most important drivers in RAS research. In the present study, we investigated the biochemical and cell biological properties of two novel missense KRAS mutations (Y71H and K147E).

View Article and Find Full Text PDF

Epigenetic regulation of gene expression, through covalent modification of histones, is a key process controlling growth and development. Accordingly, the transcription factors regulating these processes are important targets of genetic diseases. However, surprisingly little is known about the relationship between aberrant epigenetic states, the cellular process affected, and their phenotypic consequences.

View Article and Find Full Text PDF

The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG).

View Article and Find Full Text PDF

The trypanosomatid protozoon Leishmania tarentolae is a well-established model organism for studying causative agents of several tropical diseases that was more recently developed as a host for recombinant protein production. Although several expression architectures based on foreign RNA polymerases have been established for this organism, all of them rely on integration of the expression cassette into the genome. Here, we exploit a new type of expression architecture based on linear elements.

View Article and Find Full Text PDF

Altered cell division is associated with overproliferation and tumorigenesis, however, mitotic aberrations can also trigger antiproliferative responses leading to postmitotic cell cycle exit. Here, we focus on the role of the centrosome and in particular of centrosomal TACC (transforming acidic coiled coil) proteins in tumorigenesis and cellular senescence. We have complied recent evidence that inhibition or depletion of various mitotic proteins which take over key in centrosome and kinetochore integrity and mitotic checkpoint function in sufficient to activate a p53-p21(WAF) driven premature senescence phenotype.

View Article and Find Full Text PDF

The KRAS gene is the most common locus for somatic gain-of-function mutations in human cancer. Germline KRAS mutations were shown recently to be associated with developmental disorders, including Noonan syndrome (NS), cardio-facio-cutaneous syndrome (CFCS), and Costello syndrome (CS). The molecular basis of this broad phenotypic variability has in part remained elusive so far.

View Article and Find Full Text PDF

The rapid and inexpensive production of high-quality eukaryotic proteins in recombinant form still remains a challenge in structural biology. Here, a protein-expression system based on the protozoan Leishmania tarentolae was used to produce human Cu/Zn superoxide dismutase (SOD1) in recombinant form. Sequential integration of the SOD1 expression cassettes was demonstrated to lead to a linear increase in expression levels to up to 30 mg per litre.

View Article and Find Full Text PDF