Changes in the number of Weyl nodes in Weyl semimetals occur through merging processes, usually involving a pair of oppositely charged nodes. More complicated processes involving multiple Weyl nodes are also possible, but they typically require fine tuning and are thus less stable. In this Letter, we study how symmetries affect the allowed merging processes and their stability, focusing on the combination of a twofold rotation and time-reversal (C_{2}T) symmetry.
View Article and Find Full Text PDFWhile altermagnetic materials are characterized by a vanishing net magnetic moment, their symmetry in principle allows for the existence of an anomalous Hall effect. Here, we introduce a model with altermagnetism in which the emergence of an anomalous Hall effect is driven by interactions. This model is grounded in a modified Kane-Mele framework with antiferromagnetic spin-spin correlations.
View Article and Find Full Text PDFWe employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry PT and chiral symmetry anti-PT (APT). The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of PT-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit.
View Article and Find Full Text PDFNonzero weak topological indices are thought to be a necessary condition to bind a single helical mode to lattice dislocations. In this work we show that higher-order topological insulators (HOTIs) can, in fact, host a single helical mode along screw or edge dislocations (including step edges) in the absence of weak topological indices. When this occurs, the helical mode is necessarily bound to a dislocation characterized by a fractional Burgers vector, macroscopically detected by the existence of a stacking fault.
View Article and Find Full Text PDFWe construct a two-dimensional higher-order topological phase protected by a quasicrystalline eightfold rotation symmetry. Our tight-binding model describes a superconductor on the Ammann-Beenker tiling hosting localized Majorana zero modes at the corners of an octagonal sample. In order to analyze this model, we introduce Hamiltonians generated by a local rule, and use this concept to identify the bulk topological properties.
View Article and Find Full Text PDFQuantum-relativistic materials often host electronic phenomena with exotic spatial distributions. In particular, quantum anomalous Hall (QAH) insulators feature topological boundary currents whose chirality is determined by the magnetization orientation. However, understanding the microscopic nature of edge vs.
View Article and Find Full Text PDFElectron surface states in solids are typically confined to the outermost atomic layers and, due to surface disorder, have negligible impact on electronic transport. Here, we demonstrate a very different behavior for surface states in graphene. We probe the wavelike character of these states by Fabry-Perot (FP) interferometry and find that, in contrast to theoretical predictions, these states can propagate ballistically over micron-scale distances.
View Article and Find Full Text PDFWe consider two-dimensional systems in which edge states coexist with a gapless bulk. Such systems may be constructed, for example, by coupling a gapped two-dimensional state of matter that carries edge states to a gapless two-dimensional system in which the spectrum is composed of a number of Dirac cones. We find that, in the absence of disorder, the edge states could be protected even when the two systems are coupled, due to momentum and energy conservation.
View Article and Find Full Text PDF