Aims: Production of functional cardiomyocytes from pluripotent stem cells requires tight control of the differentiation process. Long non-coding RNAs (lncRNAs) exert critical regulatory functions in cell specification during development. In this study, we designed an integrated approach to identify lncRNAs implicated in cardiogenesis in differentiating human embryonic stem cells (ESCs).
View Article and Find Full Text PDFEnhancers and long noncoding RNAs (lncRNAs) are key determinants of lineage specification during development. Here, we evaluate remodeling of the enhancer landscape and modulation of the lncRNA transcriptome during mesendoderm specification. We sort mesendodermal progenitors from differentiating embryonic stem cells (ESCs) according to Eomes expression, and find that enhancer usage is coordinated with mesendoderm-specific expression of key lineage-determining transcription factors.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) are emerging as important regulators of developmental pathways. However, their roles in human cardiac precursor cell (CPC) remain unexplored. To characterize the long noncoding transcriptome during human CPC cardiac differentiation, we profiled the lncRNA transcriptome in CPCs isolated from the human fetal heart and identified 570 lncRNAs that were modulated during cardiac differentiation.
View Article and Find Full Text PDFThe key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis.
View Article and Find Full Text PDF