Background: Guanine-rich DNA motifs can form non-canonical structures known as G-quadruplexes, whose role in tumorigenic processes makes them attractive drug-target candidates for cancer therapy. Recent studies revealed that the folding and unfolding pathways of G-quadruplexes proceed through a quite stable intermediate named G-triplex.
Methods: Virtual screening was employed to identify a small set of putative G-triplex ligands.
Colloids Surf B Biointerfaces
August 2016
Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
May 2016
In the last decades, nano-oncologicals bearing a polyethylene glycol (PEG) coating are being emerging as biomimetic devices able to drive their drug cargo to solid tumors through passive mechanisms. To improve selectivity toward cancer cells, nanocarriers decorated with the small ligand folate have been widely investigated. Nevertheless, a great challenge remains the effective exposition of folate on nanoparticles (NPs), which is a key prerequisite to ensure the correct binding to receptor and the following endocytic uptake.
View Article and Find Full Text PDFThe stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc.
View Article and Find Full Text PDFThe shelterin protein TRF2 has come to the limelight for its role in telomere maintenance and tumorigenesis. Herein, the application of rational design and synthesis allowed identifying the first TRF2TRFH binder able to elicit a marked DNA damage response in cancer cells. This work paves the way for the unprecedented employment of a chemical tool to finely tune specific mechanisms underlying telomere maintenance.
View Article and Find Full Text PDFG-quadruplex unfolding within a sequence of two quadruplex units was characterized by gel electrophoresis, calorimetry and spectroscopy. The obtained results suggest that the kinetics and thermodynamics of the individual quadruplex unfolding are affected by its interaction with other DNA secondary structural elements.
View Article and Find Full Text PDFDifferential Scanning Calorimetry (DSC) is a straightforward methodology to characterize the energetics of thermally-induced transitions of DNA and other biological macromolecules. Therefore, DSC has been used to study the thermodynamic stability of several nucleic acids structures. G-quadruplexes are among the most important non-canonical nucleic acid architectures that are receiving great consideration.
View Article and Find Full Text PDFTargeting of DNA secondary structures, such as G-quadruplexes, is now considered an appealing opportunity for drug intervention in anticancer therapy. So far, efforts made in the discovery of chemotypes able to target G-quadruplexes mainly succeeded in the identification of a number of polyaromatic compounds featuring end-stacking binding properties. Against this general trend, we were persuaded that the G-quadruplex grooves can recognize molecular entities with better drug-like and selectivity properties.
View Article and Find Full Text PDFThe present study has employed a combination of spectroscopic, calorimetric and computational methods to explore the binding of the three side-chained triazatruxene derivative, termed azatrux, to a human telomeric G-quadruplex sequence, under conditions of molecular crowding. The binding of azatrux to the tetramolecular parallel [d(TGGGGT)](4) quadruplex in the presence and absence of crowding conditions, was also characterized. The data indicate that azatrux binds in an end-stacking mode to the parallel G-quadruplex scaffold and highlights the key structural elements involved in the binding.
View Article and Find Full Text PDFHuman telomeric G-quadruplex structures are known to be promising targets for an anticancer therapy. In the past decade, several research groups have been focused on the design of new ligands trying to optimize the interactions between these small molecules and the G-quadruplex motif. In most of these studies, the target structures were the single quadruplex units formed by short human DNA telomeric sequences (typically 21-26 nt).
View Article and Find Full Text PDFBovine seminal ribonuclease (BS-RNase), a homodimeric protein displaying selective cytotoxicity towards tumor cells, is isolated as a mixture of two isoforms, a dimeric form in which the chains swap their N-termini, and an unswapped dimer. In the cytosolic reducing environment, the dimeric form in which the chains swap their N-termini is converted into a noncovalent dimer (termed NCD), in which the monomers remain intertwined through their N-terminal ends. The quaternary structure renders the reduced protein resistant to the ribonuclease inhibitor, a protein that binds most ribonucleases with very high affinity.
View Article and Find Full Text PDFGuanine-rich nucleic acid sequences can adopt G-quadruplex structures stabilized by layers of four Hoogsteen-paired guanine residues. Quadruplex-prone sequences are found in many regions of human genome and in the telomeres of all eukaryotic organisms. Since small molecules that target G-quadruplexes have been found to be effective telomerase inhibitors, the identification of new specific ligands for G-quadruplexes is emerging as a promising approach to develop new anticancer drugs.
View Article and Find Full Text PDFThe nature of the binding mode and stoichiometry of the TMPyP4 cationic porphyrin to G-quadruplex structures continues to be controversial, with no consensus model to date, especially for intramolecular G-quadruplexes from human telomeric sequences. Those sequences possess intricate polymorphism in solution that appears to be reduced under molecular crowding conditions in which the parallel structure appears to be the most populated one. We have performed a systematic study, in dilute solution and under molecular crowding conditions, of the binding reactions between TMPyP4 and four G-quadruplexes formed by different truncations of human telomeric DNA, with 5'- or 3'-flanking bases, using isothermal titration calorimetry and circular dichroism.
View Article and Find Full Text PDF